Publications by authors named "John C Freedman"

Postmenopausal women are at increased risk for a cardiovascular event due to platelet hyperactivity. There is evidence suggesting that ω-3 polyunsaturated fatty acids (PUFAs) and ω-6 PUFAs have cardioprotective effects in these women. However, a mechanistic understanding of how these fatty acids regulate platelet function is unknown.

View Article and Find Full Text PDF

Autosomal recessive congenital ichthyosis (ARCI) is a diverse group of cornification diseases associated with severe clinical complications and decreased quality of life. Germline mutations in the TGM1 gene, which encodes the enzyme TGM1, are the predominant cause of ARCI. These TGM1 mutations trigger the abnormal epidermal differentiation and impaired cutaneous barrier function observed in patients with ARCI.

View Article and Find Full Text PDF

The two oxylipins 7S,14S-dihydroxydocosahexaenoic acid (diHDHA) and 7S,17S-diHDHA [resolvin D5 (RvD5)] have been found in macrophages and infectious inflammatory exudates and are believed to function as specialized pro-resolving mediators (SPMs). Their biosynthesis is thought to proceed through sequential oxidations of DHA by lipoxygenase (LOX) enzymes, specifically, by human 5-LOX (h5-LOX) first to 7(S)-hydroxy-4Z,8E,10Z,13Z,16Z,19Z-DHA (7S-HDHA), followed by human platelet 12-LOX (h12-LOX) to form 7(S),14(S)-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-DHA (7S,14S-diHDHA) or human reticulocyte 15-LOX-1 (h15-LOX-1) to form RvD5. In this work, we determined that oxidation of 7(S)-hydroperoxy-4Z,8E,10Z,13Z,16Z,19Z-DHA to 7S,14S-diHDHA is performed with similar kinetics by either h12-LOX or h15-LOX-1.

View Article and Find Full Text PDF

type F strains cause a common human foodborne illness and many cases of nonfoodborne human gastrointestinal diseases. Sporulation plays two critical roles during type F enteric disease. First, it produces broadly resistant spores that facilitate type F strain survival in the food and nosocomial environments.

View Article and Find Full Text PDF

enterotoxin (CPE) is a pore-forming toxin that causes the symptoms of common bacterial food poisoning and several non-foodborne human gastrointestinal diseases, including antibiotic-associated diarrhea and sporadic diarrhea. In some cases, CPE-mediated disease can be very severe or fatal due to the involvement of enterotoxemia. Therefore, the development of potential therapeutics against CPE action during enterotoxemia is warranted.

View Article and Find Full Text PDF

Cyclic-di-GMP (c-di-GMP) contributes to the regulation of processes required by the Lyme disease (LD) spirochetes to complete the tick-mammal enzootic cycle. Our understanding of the effector mechanisms of c-di-GMP in the is evolving. While most LD spirochete isolates encode a single PilZ domain containing c-di-GMP receptor designated as PlzA, genome analyses have revealed that a subset encode a second PilZ domain protein (PlzB).

View Article and Find Full Text PDF

Several enteric clostridial diseases can affect humans and animals. Of these, the enteric infections caused by Clostridium perfringens and Clostridium difficile are amongst the most prevalent and they are reviewed here. C.

View Article and Find Full Text PDF

enterotoxin (CPE) is responsible for the gastrointestinal symptoms of type A food poisoning and some cases of nonfoodborne gastrointestinal diseases, such as antibiotic-associated diarrhea. In the presence of certain predisposing medical conditions, this toxin can also be absorbed from the intestines to cause enterotoxemic death. CPE action involves intestinal damage, which begins at the villus tips.

View Article and Find Full Text PDF

enterotoxin (CPE) causes the diarrhea associated with a common bacterial food poisoning and many antibiotic-associated diarrhea cases. The severity of some CPE-mediated disease cases warrants the development of potential therapeutics. A previous study showed that the presence of mepacrine inhibited CPE-induced electrophysiology effects in artificial lipid bilayers lacking CPE receptors.

View Article and Find Full Text PDF

Objective: Adequate platelet reactivity is required for maintaining hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi. Platelet 12(S)-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated to regulate platelet function and thrombosis ex vivo, supporting a key role for 12-LOX in the regulation of in vivo thrombosis.

View Article and Find Full Text PDF

can produce up to three different sialidases, including NanI, its major exosialidase. The current study first showed that human intestinal strains of can grow by utilizing either glucose or sialic acids, such as -acetylneuraminic acid (Neu5Ac), which are the end products of sialidase activity. For the human enteropathogenic strain F4969, it was then determined that culture supernatant sialidase activity and expression of exosialidase genes, particularly , are influenced by the presence of Neu5Ac or glucose.

View Article and Find Full Text PDF

type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. type A strains producing enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea.

View Article and Find Full Text PDF

The c-di-GMP network of Borrelia burgdorferi, a causative agent of Lyme disease, consists of Rrp1, a diguanylate cyclase/response regulator; Hpk1, a histidine kinase; PdeA and PdeB, c-di-GMP phosphodiesterases; and PlzA, a PilZ domain c-di-GMP receptor. Borrelia hermsii, a causative agent of tick-borne relapsing fever, possesses a putative c-di-GMP regulatory network that is uncharacterized. While B.

View Article and Find Full Text PDF

Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, is responsible for diseases that occur mostly in ruminants. ETX is produced in the form of an inactive prototoxin that becomes proteolytically-activated by several proteases. A recent ex vivo study using caprine intestinal contents demonstrated that ETX prototoxin is processed in a step-wise fashion into a stable, active ∼27 kDa band on SDS-PAGE.

View Article and Find Full Text PDF

Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of several C. perfringens food- and nonfood-borne human gastrointestinal diseases. The enterotoxin gene (cpe) is located on either the chromosome (for most C.

View Article and Find Full Text PDF

Unlabelled: Clostridium perfringens type D strains are usually associated with diseases of livestock, and their virulence requires the production of epsilon toxin (ETX). We previously showed (J. Li, S.

View Article and Find Full Text PDF

Epsilon toxin (ETX), a pore-forming toxin produced by type B and D strains of Clostridium perfringens, mediates severe enterotoxemia in livestock and possibly plays a role in human disease. During enterotoxemia, the nearly inactive ETX prototoxin is produced in the intestines but then must be activated by proteolytic processing. The current study sought to examine ETX prototoxin processing and activation ex vivo using the intestinal contents of a goat, a natural host species for ETX-mediated disease.

View Article and Find Full Text PDF

Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C.

View Article and Find Full Text PDF

The ability of Clostridium perfringens type C to cause human enteritis necroticans (EN) is attributed to beta toxin (CPB). However, many EN strains also express C. perfringens enterotoxin (CPE), suggesting that CPE could be another contributor to EN.

View Article and Find Full Text PDF

Clostridium perfringens uses its arsenal of >16 toxins to cause histotoxic and intestinal infections in humans and animals. It has been unclear why this bacterium produces so many different toxins, especially since many target the plasma membrane of host cells. However, it is now established that C.

View Article and Find Full Text PDF

Clostridium perfringens enterotoxin causes the gastrointestinal (GI) symptoms of C. perfringens type A food poisoning and CPE-associated non-food-borne human GI diseases. It is well established that CPE induces fluid accumulation and severe tissue damage in ligated small intestinal loops of rabbits and other animals.

View Article and Find Full Text PDF

The Borrelia burgdorferi Rrp1 protein is a diguanylate cyclase that controls a regulon consisting of approximately 10% of the total genome. Because Rrp1 lacks a DNA-binding domain, its regulatory capability is most likely mediated through the production of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP). C-di-GMP binds to and activates the regulatory activity of proteins that harbor a PilZ domain.

View Article and Find Full Text PDF

Borrelia hermsii, an etiological agent of tick-borne relapsing fever in North America, binds host-derived serum proteins including factor H (FH), plasminogen, and an unidentified 60-kDa protein via its FhbA protein. Two distinct phylogenetic types of FhbA have been delineated (FhbA1 and FhbA2). These orthologs share a conserved C-terminal domain that contains two alpha helices with a high predictive probability of coiled-coil formation that are separated by a 14-amino-acid loop domain.

View Article and Find Full Text PDF