Publications by authors named "John C Doyle"

Animals move smoothly and reliably in unpredictable environments. Models of sensorimotor control, drawing on control theory, have assumed that sensory information from the environment leads to actions, which then act back on the environment, creating a single, unidirectional perception-action loop. However, the sensorimotor loop contains internal delays in sensory and motor pathways, which can lead to unstable control.

View Article and Find Full Text PDF

Nervous systems sense, communicate, compute, and actuate movement using distributed components with severe trade-offs in speed, accuracy, sparsity, noise, and saturation. Nevertheless, brains achieve remarkably fast, accurate, and robust control performance due to a highly effective layered control architecture. Here, we introduce a driving task to study how a mountain biker mitigates the immediate disturbance of trail bumps and responds to changes in trail direction.

View Article and Find Full Text PDF

Feedback control theory has been extensively implemented to theoretically model human sensorimotor control. However, experimental platforms capable of manipulating important components of multiple feedback loops lack development. This paper describes WheelCon, an open-source platform aimed at resolving such insufficiencies.

View Article and Find Full Text PDF

Major changes in the microbiome are associated with health and disease. Some microbiome states persist despite seemingly unfavorable conditions, such as the proliferation of aerobe-anaerobe communities in oxygen-exposed environments in wound infections or small intestinal bacterial overgrowth. Mechanisms underlying transitions into and persistence of these states remain unclear.

View Article and Find Full Text PDF

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose.

View Article and Find Full Text PDF

Feedback regulation is pervasive in biology at both the organismal and cellular level. In this article, we explore the properties of a particular biomolecular feedback mechanism called antithetic integral feedback, which can be implemented using the binding of two molecules. Our work develops an analytic framework for understanding the hard limits, performance tradeoffs, and architectural properties of this simple model of biological feedback control.

View Article and Find Full Text PDF

As we begin to design increasingly complex synthetic biomolecular systems, it is essential to develop rational design methodologies that yield predictable circuit performance. Here we apply mathematical tools from the theory of control and dynamical systems to yield practical insights into the architecture and function of a particular class of biological feedback circuit. Specifically, we show that it is possible to analytically characterize both the operating regime and performance tradeoffs of an antithetic integral feedback circuit architecture.

View Article and Find Full Text PDF

The success of targeted cancer therapy is limited by drug resistance that can result from tumor genetic heterogeneity. The current approach to address resistance typically involves initiating a new treatment after clinical/radiographic disease progression, ultimately resulting in futility in most patients. Towards a potential alternative solution, we developed a novel computational framework that uses human cancer profiling data to systematically identify dynamic, pre-emptive, and sometimes non-intuitive treatment strategies that can better control tumors in real-time.

View Article and Find Full Text PDF

The correlation method from brain imaging has been used to estimate functional connectivity in the human brain. However, brain regions might show very high correlation even when the two regions are not directly connected due to the strong interaction of the two regions with common input from a third region. One previously proposed solution to this problem is to use a sparse regularized inverse covariance matrix or precision matrix (SRPM) assuming that the connectivity structure is sparse.

View Article and Find Full Text PDF

Integral feedback for perfect adaptation is a ubiquitous strategy in engineering and biology. Long studied in deterministic settings, it can now be understood in the context of the fully stochastic systems that are prevalent in biology.

View Article and Find Full Text PDF

The correlation of healthy states with heart rate variability (HRV) using time series analyses is well documented. Whereas these studies note the accepted proximal role of autonomic nervous system balance in HRV patterns, the responsible deeper physiological, clinically relevant mechanisms have not been fully explained. Using mathematical tools from control theory, we combine mechanistic models of basic physiology with experimental exercise data from healthy human subjects to explain causal relationships among states of stress vs.

View Article and Find Full Text PDF
Architecture, constraints, and behavior.

Proc Natl Acad Sci U S A

September 2011

This paper aims to bridge progress in neuroscience involving sophisticated quantitative analysis of behavior, including the use of robust control, with other relevant conceptual and theoretical frameworks from systems engineering, systems biology, and mathematics. Familiar and accessible case studies are used to illustrate concepts of robustness, organization, and architecture (modularity and protocols) that are central to understanding complex networks. These essential organizational features are hidden during normal function of a system but are fundamental for understanding the nature, design, and function of complex biologic and technologic systems.

View Article and Find Full Text PDF

Both engineering and evolution are constrained by trade-offs between efficiency and robustness, but theory that formalizes this fact is limited. For a simple two-state model of glycolysis, we explicitly derive analytic equations for hard trade-offs between robustness and efficiency with oscillations as an inevitable side effect. The model describes how the trade-offs arise from individual parameters, including the interplay of feedback control with autocatalysis of network products necessary to power and catalyze intermediate reactions.

View Article and Find Full Text PDF

Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes.

View Article and Find Full Text PDF

In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is critical, however, for both basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brainwide coverage, using injections of tracers or viral vectors.

View Article and Find Full Text PDF

Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the design principles of such modular architectures.

View Article and Find Full Text PDF

The search for unifying properties of complex networks is popular, challenging, and important. For modeling approaches that focus on robustness and fragility as unifying concepts, the Internet is an especially attractive case study, mainly because its applications are ubiquitous and pervasive, and widely available exposition exists at every level of detail. Nevertheless, alternative approaches to modeling the Internet often make extremely different assumptions and derive opposite conclusions about fundamental properties of one and the same system.

View Article and Find Full Text PDF

Advanced technologies and biology have extremely different physical implementations, but they are far more alike in systems-level organization than is widely appreciated. Convergent evolution in both domains produces modular architectures that are composed of elaborate hierarchies of protocols and layers of feedback regulation, are driven by demand for robustness to uncertain environments, and use often imprecise components. This complexity may be largely hidden in idealized laboratory settings and in normal operation, becoming conspicuous only when contributing to rare cascading failures.

View Article and Find Full Text PDF