Background: Congenital stationary night-blindness (CSNB) is a recessive autosomal defect in low-light vision in Appaloosa and other horse breeds. This condition has been mapped by linkage analysis to a gene coding for the Transient Receptor Potential cation channel Member 1 (TRPM1). TRPM1 is normally expressed in the ON-bipolar cells of the inner nuclear layer of the retina.
View Article and Find Full Text PDFBackground: Lipopolysaccharide (LPS)-mediated sickness behaviour is known to be a result of increased inflammatory cytokines in the brain. Inflammatory cytokines have been shown to mediate increases in brain excitation by loss of GABAA-mediated inhibition through receptor internalization or inactivation. Inflammatory pathways, reactive oxygen species and stress are also known to increase monoamine oxidase-A (MAO-A) and acetylcholinesterase (ACh-E) activity.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2014
The objectives of this study were to determine the effect of an increase in diet fermentability on 1) the rate and extent to which short-chain fatty acid (SCFA) absorption pathways adapt relative to changes in Na(+) transport, 2) the epithelial surface area (SA), and 3) the barrier function of the bovine ruminal epithelium. Twenty-five Holstein steer calves were assigned to either the control diet (CON; 91.5% hay and 8.
View Article and Find Full Text PDFThe CLCA gene family produces both secreted and membrane-associated proteins that modulate ion-channel function, drive mucus production and have a poorly understood pleiotropic effect on airway inflammation. The primary up-regulated human CLCA ortholog in airway inflammation is hCLCA1. Here we show that this protein can activate airway macrophages, inducing them to express cytokines and to undertake a pivotal role in airway inflammation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2013
Influenza infects the epithelial cells lining the airways. Normally epithelial cells move solutes through ion channels to create the osmotic drive to hydrate the airways. Viral alteration of this process could explain, in part, the fluid imbalance in the lungs and the resulting pulmonary edema that occurs during severe influenza infections.
View Article and Find Full Text PDF