Publications by authors named "John Byon"

Both DNA and histone methylation are dysregulated in the myelodysplastic syndromes (MDS). Based on preliminary data we hypothesized that dysregulated interactions of KDM2B, let-7b and EZH2 signals lead to an aberrant epigenetic landscape. Gene expression in CD34+ cells from MDS marrows was analyzed by NanoString miR array and validated by real-time polymerase chain reaction (PCR).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have been shown to influence erythroid lineage commitment and differentiation; however, our knowledge of miRNA function in terminal erythropoiesis remains limited. To address this issue, we generated a novel animal model, where the miRNA-processing enzyme, Dicer, is selectively inactivated in erythropoietin receptor positive erythroid cells beginning with CFU-e/proerythroblast cells. This results in significant depletion of all miRNAs from the proerythroblast stage onwards, with one exception, miR-451, which is processed by Ago2 in a Dicer-independent manner.

View Article and Find Full Text PDF

Heme is a pleiotropic molecule that is important for oxygen and oxidative metabolism, most notably as the prosthetic group of hemoglobin and cytochromes. Because excess free intracellular heme is toxic, organisms have developed mechanisms to tightly regulate its concentration. One mechanism is through active heme export by the group C feline leukemia virus receptor (FLVCR).

View Article and Find Full Text PDF

The transcription factor TWIST-1 is up-regulated in CD34(+) cells in myelodysplastic syndrome and is involved in resistance to apoptosis. There is evidence that TWIST-1 affects apoptosis via microRNAs (miRs). Expression of miRs was determined in myeloid cell lines and primary CD34(+) marrow cells from patients with myelodysplastic syndrome and healthy donors using NanoString/array and validated by real-time-polymerase chain reaction.

View Article and Find Full Text PDF

MicroRNAs are small non-coding RNAs that negatively regulate gene expression through mRNA degradation or translational repression. It is becoming increasingly recognized that miRNAs play central roles in almost all cellular processes, and especially during development. The function of miRNAs in hematopoiesis, including erythropoiesis, is beginning to be elucidated.

View Article and Find Full Text PDF