Purpose: To assess if adolescent dating violence was associated with physical intimate partner violence victimization in adulthood, using a comprehensive propensity score to create a matched group of victims and nonvictims.
Methods: Secondary analysis of waves 1 (1994-1995), 2 (1996), 3 (2001-2002) and 4 (2007-2008) of the National Longitudinal Study of Adolescent to Adult Health, a nationally representative sample of US high schools and middle schools. Individuals aged 12-18 reporting adolescent dating violence between the wave 1 and 2 interviews (n = 732) were matched to nonvictimized participants of the same sex (n = 1,429) using propensity score matching.
We wish to estimate the total number of classes in a population based on sample counts, especially in the presence of high latent diversity. Drawing on probability theory that characterizes distributions on the integers by ratios of consecutive probabilities, we construct a nonlinear regression model for the ratios of consecutive frequency counts. This allows us to predict the unobserved count and hence estimate the total diversity.
View Article and Find Full Text PDFHigh-throughput sequencing platforms are continuing to increase resulting read lengths, which is allowing for a deeper and more accurate depiction of environmental microbial diversity. With the nascent Reagent Kit v3, Illumina MiSeq now has the ability to sequence the eukaryotic hyper-variable V4 region of the SSU-rDNA locus with paired-end reads. Using DNA collected from soils with analyses of strictly- and nearly identical amplicons, here we ask how the new Illumina MiSeq data compares with what we can obtain with Roche/454 GS FLX with regard to quantity and quality, presence and absence, and abundance perspectives.
View Article and Find Full Text PDFBackground: Viruses are important drivers of ecosystem functions, yet little is known about the vast majority of viruses. Viral shotgun metagenomics enables the investigation of broad ecological questions in phage communities. One ecological characteristic is species richness, which is the number of different species in a community.
View Article and Find Full Text PDFMotivation: The massive data produced by next-generation sequencing require advanced statistical tools. We address estimating the total diversity or species richness in a population. To date, only relatively simple methods have been implemented in available software.
View Article and Find Full Text PDFThis article reviews recent advances in 'microbiome studies': molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us.
View Article and Find Full Text PDFThe hyper-variable V4 and V9 regions of the small subunit (SSU) rDNA have been targeted for assessing environmental diversity of microbial eukaryotes using next generation sequencing technologies. Here, we explore how the genetic distances among these short fragments compare with the distances obtained from near full-length SSU-rDNA sequences by comparing all pairwise estimates, as well as within and among species of ciliates. Results show that pairwise distances from V4 more closely match the near full-length SSU-rDNA and are more comparable with previous studies based on much longer SSU-rDNA fragments, then pairwise distances from V9.
View Article and Find Full Text PDFPac Symp Biocomput
December 2013
We consider the classical population diversity estimation scenario based on frequency count data (the number of classes or taxa represented once, twice, etc. in the sample), but with the proviso that the lowest frequency counts, especially the singletons, may not be reliably observed. This arises especially in data derived from modern high-throughput DNA sequencing, where errors may cause sequences to be incorrectly assigned to new taxa instead of being matched to existing, observed taxa.
View Article and Find Full Text PDFMicrobial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients.
View Article and Find Full Text PDFThis is the second paper in a series of three that investigates eukaryotic microbial diversity and taxon distribution in the Cariaco Basin, Venezuela, the ocean's largest anoxic marine basin. Here, we use phylogenetic information, multivariate community analyses and statistical richness predictions to test whether protists exhibit habitat specialization within defined geochemical layers of the water column. We also analyze spatio-temporal distributions of protists across two seasons and two geographic sites within the basin.
View Article and Find Full Text PDFIn many situations we are faced with the need to estimate the number of classes in a population from observed count data: this arises not only in biology, where we are interested in the number of taxa such as species, but also in many other fields such as public health, criminal justice, software engineering, etc. This problem has a rich history in theoretical statistics, dating back at least to 1943, and many approaches have been proposed and studied. However, to date only one approach has been implemented in readily available software, namely a relatively simple nonparametric method which, while straightforward to program, is not flexible and can be prone to information loss.
View Article and Find Full Text PDFDespite the ecological importance of marine pico-size eukaryotes, the study of their in situ diversity using molecular tools started just a few years ago. These studies have revealed that marine picoeukaryotes are very diverse and include many novel taxa. However, the amount and structure of their phylogenetic diversity and the extent of their sequence novelty still remains poorly known, as a systematic analysis has been seldom attempted.
View Article and Find Full Text PDFOver the past 100 years, Arctic temperatures have increased at almost twice the global average rate. One consequence is the acceleration of glacier retreat, exposing new habitats that are colonized by microorganisms whose diversity and function are unknown. Here, we characterized bacterial diversity along two approximately parallel chronosequences in an Arctic glacier forefield that span six time points following glacier retreat.
View Article and Find Full Text PDFDespite its relevance for ecology and biodiversity, the stability of spatial microeukaryote diversity patterns in time has received only little attention using gene-based strategies, and there is little knowledge about the relation of spatial vs. temporal variation. We addressed this subject by investigating seasonal fluctuations in protistan communities in three ecologically distinct marine habitats.
View Article and Find Full Text PDFThe rRNA approach is the principal tool to study microbial diversity, but it has important biases. These include polymerase chain reaction (PCR) primers bias, and relative inefficiency of DNA extraction techniques. Such sources of potential undersampling of microbial diversity are well known, but the scale of the undersampling has not been quantified.
View Article and Find Full Text PDFWe report a ribosomal tag pyrosequencing study of the phylogenetic diversity of Archaea, Bacteria and Eucarya over a depth profile at the Hawaii Ocean Time-Series Station, ALOHA. The V9 region of the SSU rRNA gene was amplified from samples representing the epi- (10 m), meso- (800 m) and bathy- (4400 m) pelagia. The primers used are expected to amplify representatives of approximately 80% of known phylogenetic diversity across all three domains.
View Article and Find Full Text PDFBackground: Crocodilians (Order Crocodylia) are an ancient vertebrate group of tremendous ecological, social, and evolutionary importance. They are the only extant reptilian members of Archosauria, a monophyletic group that also includes birds, dinosaurs, and pterosaurs. Consequently, crocodilian genomes represent a gateway through which the molecular evolution of avian lineages can be explored.
View Article and Find Full Text PDFCot analysis (DNA reassociation kinetics) has long been used to explore genome structure in individual species, estimate genome similarity among organisms, and evaluate diversity in ecological samples, yet the algorithms and computational tools designed for analyzing Cot data are outdated, difficult to use, and prone to error. We report a new nonlinear regression procedure for analysis of Cot data and describe our algorithms in detail. Our procedure is implemented as CotQuest, a suite of scripts designed for use with the statistics package SAS.
View Article and Find Full Text PDFBackground: The main tool to discover novel microbial eukaryotes is the rRNA approach. This approach has important biases, including PCR discrimination against certain rRNA gene species, which makes molecular inventories skewed relative to the source communities. The degree of this bias has not been quantified, and it remains unclear whether species missed from clone libraries could be recovered by increasing sequencing efforts, or whether they cannot be detected in principle.
View Article and Find Full Text PDFWe consider parametric distributions intended to model heterogeneity in population size estimation, especially parametric stochastic abundance models for species richness estimation. We briefly review (conditional) maximum likelihood estimation of the number of species, and summarize the results of fitting 7 candidate models to frequency-count data, from a database of >40000 such instances, mostly arising from microbial ecology. We consider error estimation, goodness-of-fit assessment, data subsetting, and other practical matters.
View Article and Find Full Text PDFEnvironmental factors restrict the distribution of microbial eukaryotes but the exact boundaries for eukaryotic life are not known. Here, we examine protistan communities at the extremes of salinity and osmotic pressure, and report rich assemblages inhabiting Bannock and Discovery, two deep-sea superhaline anoxic basins in the Mediterranean. Using a rRNA-based approach, we detected 1,538 protistan rRNA gene sequences from water samples with total salinity ranging from 39 to 280 g/Kg, and obtained evidence that this DNA was endogenous to the extreme habitat sampled.
View Article and Find Full Text PDFConsider a sample of animal abundances collected from one sampling occasion. Our focus is in estimating the number of species in a closed population. In order to conduct a noninformative Bayesian inference when modeling this data, we derive Jeffreys and reference priors from the full likelihood.
View Article and Find Full Text PDFEnviron Microbiol
February 2009
The frontiers of eukaryote life in nature are still unidentified. In this study, we analysed protistan communities in the hypersaline (up to 365 g l(-1) NaCl) anoxic L'Atalante deep-sea basin located in the eastern Mediterranean Sea. Targeting 18S ribosomal RNA retrieved from the basin's lower halocline (3501 m depth) we detected 279 protistan sequences that grouped into 42 unique phylotypes (99% sequence similarity).
View Article and Find Full Text PDFBackground: The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and the smallest diversity of ancestral lineages of microbial eukaryotes.
View Article and Find Full Text PDF