Genomic risk prediction is on the emerging path toward personalized medicine. However, the accuracy of polygenic prediction varies strongly in different individuals. Based on up to 352,277 European ancestry participants in the UK Biobank, we constructed polygenic risk scores for 15 physiological and biochemical quantitative traits.
View Article and Find Full Text PDFPurpose: The study aimed to evaluate whether polygenic risk scores could be helpful in addition to family history for triaging individuals to undergo deep-depth diagnostic sequencing for identifying monogenic causes of complex diseases.
Methods: Among 44,550 exome-sequenced European ancestry UK Biobank participants, we identified individuals with a clinically reported or computationally predicted monogenic pathogenic variant for breast cancer, bowel cancer, heart disease, diabetes, or Alzheimer disease. We derived polygenic risk scores for these diseases.
In Mendelian randomization (MR), inference about causal relationship between a phenotype of interest and a response or disease outcome can be obtained by constructing instrumental variables from genetic variants. However, MR inference requires three assumptions, one of which is that the genetic variants only influence the outcome through phenotype of interest. Pleiotropy, that is, the situation in which some genetic variants affect more than one phenotype, can invalidate these genetic variants for use as instrumental variables; thus a naive analysis will give biased estimates of the causal relation.
View Article and Find Full Text PDF