Publications by authors named "John Bowen"

Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains.

View Article and Find Full Text PDF

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19.

View Article and Find Full Text PDF
Article Synopsis
  • The ongoing evolution of SARS-CoV-2 is weakening immune responses from previous vaccinations and infections.
  • A specific mutation, E406W, changes the receptor-binding site on the virus, reducing the effectiveness of certain therapeutic antibodies and vaccine-induced antibodies.
  • This study highlights the dynamic nature of the virus's receptor-binding domain, which is still adapting as new variants with additional mutations emerge.
View Article and Find Full Text PDF

Preceramic polymers (PCPs) are a group of specialty macromolecules that serve as precursors for generating inorganics, including ceramic carbides, nitrides, and borides. PCPs represent interesting synthetic challenges for chemists due to the elements incorporated into their structure. This group of polymers is also of interest to engineers as PCPs enable the processing of polymer-derived ceramic products including high-performance ceramic fibers and composites.

View Article and Find Full Text PDF

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity, and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month time frame. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple safe and effective COVID-19 vaccines have been developed globally, utilizing different technologies and strategies to enhance their efficacy.! -
  • Vaccines with specific "prefusion-stabilizing S mutations" trigger stronger antibody responses in humans, leading to better recognition and neutralization of the spike protein compared to those without these modifications.! -
  • The study findings suggest a need for improved designs in future S-engineered vaccines to ensure they remain effective against new variants of the virus.!
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.

View Article and Find Full Text PDF

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals.

View Article and Find Full Text PDF

Accumulating evidence has shown that bisphenol A (BPA) affects not only the growth and development of reproductive tissues but also disrupts meiosis. Meiotic disturbances lead to the formation of aneuploid gametes, resulting in the inability to conceive, pregnancy loss, and developmental disabilities in offspring. In recent years, increasing health concerns led manufacturers to seek BPA alternatives.

View Article and Find Full Text PDF

The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations.

View Article and Find Full Text PDF
Article Synopsis
  • The Omicron variant of SARS-CoV-2 includes various sublineages such as BA.2, BA.2.12.1, BA.4, and BA.5, which are now more prevalent than the earlier BA.1 variant.
  • These sublineages have mutations that enhance binding to ACE2, reduce cell fusion capabilities, and significantly lower neutralizing antibody responses from previous infections or vaccines.
  • However, booster shots using the original Wuhan-Hu-1 spike sequence can significantly enhance neutralizing antibody levels, suggesting that while initial vaccinations may be less effective against Omicron, boosters can still provide strong protection against severe illness.
View Article and Find Full Text PDF

Biomedical imaging includes the use of a variety of techniques to study organs and tissues. Some of the possible imaging modalities are more spread at clinical level (CT, MRI, PET), while others, such as light and electron microscopy are preferred in life sciences research. The choice of the imaging modalities can be based on the capability to study functional aspects of an organism, the delivered radiation dose to the patient, and the achievable resolution.

View Article and Find Full Text PDF

SARS-CoV-2 Omicron sublineages carry distinct spike mutations and represent an antigenic shift resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters result in potent plasma neutralizing activity against Omicron BA.1 and BA.

View Article and Find Full Text PDF

We designed a protein biosensor that uses thermodynamic coupling for sensitive and rapid detection of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in serum. The biosensor is a switchable, caged luciferase-receptor-binding domain (RBD) construct that detects serum-antibody interference with the binding of virus RBD to angiotensin-converting enzyme 2 (ACE-2) as a proxy for neutralization. Our coupling approach does not require target modification and can better distinguish sample-to-sample differences in analyte binding affinity and abundance than traditional competition-based assays.

View Article and Find Full Text PDF

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here, we used a cell-free expression workflow to rapidly screen and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy was achieved with a homotrimeric version of the 75-residue angiotensin-converting enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture.

View Article and Find Full Text PDF

In this paper, we present rule-based fuzzy inference systems that consist of a series of mathematical representations based on fuzzy concepts in the filtering structure. It is crucial for understanding and discussing different principles associated with fuzzy filter design procedures. A number of typical fuzzy multichannel filtering approaches are provided in order to clarify the different fuzzy filter designs and compare different algorithms.

View Article and Find Full Text PDF

Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.

View Article and Find Full Text PDF

Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses.

View Article and Find Full Text PDF

The SARS-CoV-2 receptor-binding domain (RBD) E406W mutation abrogates neutralization mediated by the REGEN-CoV therapeutic monoclonal antibody (mAb) COVID-19 cocktail and the cilgavimab (AZD1061) mAb. Here, we show that this residue substitution remodels the ACE2-binding site allosterically, thereby dampening receptor recognition severely and altering the epitopes recognized by these three mAbs. Although vaccine-elicited neutralizing antibody titers are decreased similarly against the E406 mutant and the Delta or Epsilon variants, broadly neutralizing sarbecovirus mAbs, including a clinical mAb, inhibit the E406W spike mutant.

View Article and Find Full Text PDF

The SARS-CoV-2 Omicron BA.1 variant emerged in 2021 and has multiple mutations in its spike protein. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern evades antibody-mediated immunity that comes from vaccination or infection with earlier variants due to accumulation of numerous spike mutations. To understand the Omicron antigenic shift, we determined cryo-electron microscopy and x-ray crystal structures of the spike protein and the receptor-binding domain bound to the broadly neutralizing sarbecovirus monoclonal antibody (mAb) S309 (the parent mAb of sotrovimab) and to the human ACE2 receptor. We provide a blueprint for understanding the marked reduction of binding of other therapeutic mAbs that leads to dampened neutralizing activity.

View Article and Find Full Text PDF

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding how certain antibodies can neutralize SARS-CoV-2 variants and related viruses to aid in creating effective treatments.
  • Researchers isolated a human monoclonal antibody called S2K146 that effectively targets and inhibits these viruses by binding to the same receptor (ACE2) they use to enter cells.
  • S2K146 has shown promise in protecting hamsters from SARS-CoV-2 Beta variant challenges and has a low chance of virus variants developing resistance, suggesting its potential as a strong candidate for future vaccine development.
View Article and Find Full Text PDF