Publications by authors named "John Bothos"

Background: MEDI7247 is a first-in-class antibody-drug conjugate (ADC) consisting of an anti-sodium-dependent alanine-serine-cysteine transporter 2 antibody-conjugated to a pyrrolobenzodiazepine dimer.

Objective: This first-in-human phase 1 trial evaluated MEDI7247 in patients with hematological malignancies.

Patients And Methods: Adults with acute myeloid leukemia (AML), multiple myeloma (MM), or diffuse large B-cell lymphoma (DLBCL) relapsed or refractory (R/R) to standard therapies, or for whom no standard therapy exists, were eligible.

View Article and Find Full Text PDF

Purpose: Durvalumab significantly improves overall survival for patients with unresectable stage III non-small-cell lung cancer and no progression after concurrent chemoradiotherapy (cCRT). Building upon that standard of care, COAST is a phase II study of durvalumab alone or combined with the anti-CD73 monoclonal antibody oleclumab or anti-NKG2A monoclonal antibody monalizumab as consolidation therapy in this setting.

Methods: Patients with unresectable stage III non-small-cell lung cancer, Eastern Cooperative Oncology Group performance status 0/1, and no progression after cCRT were randomly assigned 1:1:1, ≤ 42 days post-cCRT, to durvalumab alone or combined with oleclumab or monalizumab for up to 12 months, stratified by histology.

View Article and Find Full Text PDF

Purpose: MEDI3726 is an antibody-drug conjugate targeting the prostate-specific membrane antigen and carrying a pyrrolobenzodiazepine warhead. This phase I study evaluated MEDI3726 monotherapy in patients with metastatic castration-resistant prostate cancer after disease progression on abiraterone and/or enzalutamide and taxane-based chemotherapy.

Patients And Methods: MEDI3726 was administered at 0.

View Article and Find Full Text PDF

Background: Mantle-cell lymphoma is an aggressive B-cell lymphoma with a poor prognosis. Both ibrutinib and temsirolimus have shown single-agent activity in patients with relapsed or refractory mantle-cell lymphoma. We undertook a phase 3 study to assess the efficacy and safety of ibrutinib versus temsirolimus in relapsed or refractory mantle-cell lymphoma.

View Article and Find Full Text PDF

Purpose: This first-in-human study evaluated the safety, immunogenicity, pharmacokinetics, and antitumor activity of onartuzumab, a monovalent antibody against the receptor tyrosine kinase MET.

Experimental Design: This 3+3 dose-escalation study comprised three stages: (i) phase Ia dose escalation of onartuzumab at doses of 1, 4, 10, 20, and 30 mg/kg intravenously every 3 weeks; (ii) phase Ia cohort expansion at the recommended phase II dose (RP2D) of 15 mg/kg; and (iii) phase Ib dose escalation of onartuzumab at 10 and 15 mg/kg in combination with bevacizumab (15 mg/kg intravenously every 3 weeks). Serum samples were collected for evaluation of pharmacokinetics, potential pharmacodynamic markers, and antitherapeutic antibodies.

View Article and Find Full Text PDF

Onartuzumab is a unique, humanized, monovalent (one-armed) monoclonal antibody (mAb) against the MET receptor. The intravenous (IV) pharmacokinetics (PK) of onartuzumab were investigated in a phase I study and a phase II study in recurrent non-small cell lung cancer (NSCLC) patients. The potential for drug-drug interaction (DDI) was assessed during co-administration of IV onartuzumab with oral erlotinib, by measuring the PK of both drugs.

View Article and Find Full Text PDF

A molecular pathway homologous to the S. cerevisiae mitotic exit network (MEN) and S. pombe septation initiation network has recently been described in higher eukaryotes and involves the tumor suppressor kinase LATS1 and its subunit MOB1A.

View Article and Find Full Text PDF

The kinase LATS/WARTS is a tumor suppressor protein conserved in evolution, but its function at the molecular level is not well understood. We report here that human LATS1 interacts with MOB1A, a protein whose homologue in budding yeast associates with kinases involved in mitotic exit. This suggested that LATS1 may be a component of the previously uncharacterized mitotic exit network in higher eukaryotes.

View Article and Find Full Text PDF

CHFR, a novel checkpoint gene inactivated in human cancer, delays chromosome condensation in cells treated with microtubule poisons. To understand the molecular mechanism for this delay, we characterized cells with inactivated CHFR and stably transfected derivatives expressing the wild-type gene. After exposure to microtubule poisons, the CHFR-expressing cells arrested transiently in early prophase with a characteristic ruffled morphology of the nuclear envelope and no signs of chromosome condensation.

View Article and Find Full Text PDF

A hallmark of cancer is inactivation of cell cycle checkpoints. However, very few mutations targeting mitotic checkpoint genes have been described, and in those instances, a wild-type copy of the gene was retained. chfr is a mitotic checkpoint gene that functions in early prophase delaying chromosome condensation in response to microtubule poisons.

View Article and Find Full Text PDF

We recently described a novel checkpoint pathway that functions early in mitosis to delay chromosome condensation in response to microtubule poisons. The only gene implicated so far in this checkpoint pathway is chfr, whose protein product contains a RING domain and has ubiquitin ligase activity in vitro. The significance of this activity in vivo is unclear.

View Article and Find Full Text PDF

The Mob protein family comprises a group of highly conserved eukaryotic proteins whose founding member functions in the mitotic exit network. At the molecular level, Mob proteins act as kinase-activating subunits. We cloned a human Mob1 family member, Mob1A, and determined its three-dimensional structure by X-ray crystallography.

View Article and Find Full Text PDF