It has long been realized that even a perfectly clean electronic system harbors a Landauer-Sharvin resistance, inversely proportional to the number of its conduction channels. This resistance is usually associated with voltage drops on the system's contacts to an external circuit. Recent theories have shown that hydrodynamic effects can reduce this resistance, raising the question of the lower bound of resistance of hydrodynamic electrons.
View Article and Find Full Text PDFWhen approaching the atomically thin limit, defects and disorder play an increasingly important role in the properties of two-dimensional (2D) materials. While defects are generally thought to negatively affect superconductivity in 2D materials, here we demonstrate the contrary in the case of oxygenation of ultrathin tantalum disulfide (TaS). Our first-principles calculations show that incorporation of oxygen into the TaS crystal lattice is energetically favorable and effectively heals sulfur vacancies typically present in these crystals, thus restoring the electronic band structure and the carrier density to the intrinsic characteristics of TaS.
View Article and Find Full Text PDFHydrodynamics, which generally describes the flow of a fluid, is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate. Although various aspects of electron hydrodynamics have been revealed in recent experiments, the fundamental spatial structure of hydrodynamic electrons-the Poiseuille flow profile-has remained elusive. Here we provide direct imaging of the Poiseuille flow of an electronic fluid, as well as a visualization of its evolution from ballistic flow.
View Article and Find Full Text PDFA variety of physical phenomena associated with nanoscale electron transport often results in non-trivial spatial voltage and current patterns, particularly in nonlocal transport regimes. While numerous techniques have been devised to image electron flows, the need remains for a nanoscale probe capable of simultaneously imaging current and voltage distributions with high sensitivity and minimal invasiveness, in a magnetic field, across a broad range of temperatures and beneath an insulating surface. Here we present a technique for spatially mapping electron flows based on a nanotube single-electron transistor, which achieves high sensitivity for both voltage and current imaging.
View Article and Find Full Text PDFConversion of electric current into heat involves microscopic processes that operate on nanometer length scales and release minute amounts of power. Although central to our understanding of the electrical properties of materials, individual mediators of energy dissipation have so far eluded direct observation. Using scanning nanothermometry with submicrokelvin sensitivity, we visualized and controlled phonon emission from individual atomic-scale defects in graphene.
View Article and Find Full Text PDFThe bricks and mortar in the classic structure of nacre have characteristic geometry, aspect ratios and relative proportions; these key parameters can be retained while scaling down the absolute length scale by more than 1 order of magnitude. The results shed light on fundamental scaling behavior and provide new opportunities for high performance, yet ductile, lightweight nanocomposites. Reproducing the toughening mechanisms of nacre at smaller length scales allows a greater volume of interface per unit volume while simultaneously increasing the intrinsic properties of the inorganic constituents.
View Article and Find Full Text PDF