Publications by authors named "John Bianco"

Increasing evidence exists that the gut microbiome influences toxicity as well as outcomes in a variety of cancers. To investigate the role of the gut microbiome in pediatric neuro-oncology, microbiome analysis has been included in multiple prospective pediatric neuro-oncology clinical trials (NCT05009992, NCT04732065, NCT04775485). In these trials, the OMNIgene-GUT preservation tubes are used for the collection of the feces.

View Article and Find Full Text PDF

Performance improvement methodologies do not currently include any structures that encourage analysis of how bias, inequity, or social determinants of health (SDOH) contribute to outcomes. The Montefiore Center for Performance Improvement developed a novel quality improvement (QI) toolkit that ingrains issues of diversity, equity, and inclusion (DEI) and SDOH into the Institute for Healthcare Improvement's tools. The toolkit prompts QI teams to evaluate DEI and SDOH at each step of the journey, including an updated charter and stratified baseline tool, a new fishbone diagram for the discovery phase with a tail to include DEI and SDOH, and additions in the Study and Act sessions of the Plan-Do-Study-Act worksheet to address these issues.

View Article and Find Full Text PDF

Diffuse midline glioma (DMG) is an aggressive brain tumour with high mortality and limited clinical therapeutic options. Although in vitro research has shown the effectiveness of medication, successful translation to the clinic remains elusive. A literature search highlighted the high variability and lack of standardisation in protocols applied for establishing the commonly used HSJD-DIPG-007 patient-derived xenograft (PDX) model, based on animal host, injection location, number of cells inoculated, volume, and suspension matrices.

View Article and Find Full Text PDF

High-grade gliomas, in particularly diffuse midline glioma, H3K27-altered in children and glioblastoma in adults, are the most lethal brain tumour with a dismal prognosis. Developments in modern medicine are constantly being applied in the search for a cure, although finding the right strategy remains elusive. Circumventing the blood-brain barrier is one of the biggest challenges when it comes to treating brain tumours.

View Article and Find Full Text PDF

Aim: Anticancer drug-loaded hydrogels are a promising strategy for the local treatment of incurable brain tumors such as glioblastoma (GBM). Recently, we demonstrated the efficacy of lauroyl-gemcitabine lipid nanocapsule hydrogel (GemC-LNC) in a U-87 MG xenograft orthotopic mouse model. In this study, we developed a reliable and reproducible surgical procedure to resect orthotopic GBM tumors in rats.

View Article and Find Full Text PDF

Introduction: Glioblastoma (GBM) therapy is highly challenging, as the tumors are very aggressive due to infiltration into the surrounding normal brain tissue. Even a combination of the available therapeutic regimens may not debulk the tumor completely. GBM tumors are also known for recurrence, resulting in survival rates averaging <18 months.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor. Despite available therapeutic options, the prognosis for patients with GBM remains very poor. We hypothesized that the intra-operative injection of a photopolymerizable hydrogel into the tumor resection cavity could sustain the release of the anti-cancer drug paclitaxel (PTX) encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles and prevent GBM recurrence.

View Article and Find Full Text PDF

Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration.

View Article and Find Full Text PDF

Oligodendrocyte progenitor cells (OPCs) play a pivotal role in both health and disease within the central nervous system, with oligodendrocytes, arising from resident OPCs, being the main myelinating cell type. Disruption in OPC numbers can lead to various deleterious health defects. Numerous studies have described techniques for isolating OPCs to obtain a better understanding of this cell type and to open doors for potential treatments of injury and disease.

View Article and Find Full Text PDF

In vitro and in vivo models of experimental glioma are useful tools to gain a better understanding of glioblastoma (GBM) and to investigate novel treatment strategies. However, the majority of preclinical models focus on treating solid intracranial tumours, despite surgical resection being the mainstay in the standard care of patients with GBM today. The lack of resection and recurrence models therefore has undermined efforts in finding a treatment for this disease.

View Article and Find Full Text PDF

Although brain tumours have been documented and recorded since the nineteenth century, 2016 marked 90 years since Percival Bailey and Harvey Cushing coined the term "glioblastoma multiforme". Since that time, although extensive developments in diagnosis and treatment have been made, relatively little improvement on prognosis has been achieved. The resilience of GBM thus makes treating this tumour one of the biggest challenges currently faced by neuro-oncology.

View Article and Find Full Text PDF

Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail.

View Article and Find Full Text PDF

Drug access to the CNS is hindered by the presence of the blood-brain barrier (BBB), and the intranasal route has risen as a non-invasive route to transport drugs directly from nose-to-brain avoiding the BBB. In addition, nanoparticles (NPs) have been described as efficient shuttles for direct nose-to-brain delivery of drugs. Nevertheless, there are few studies describing NP nose-to-brain transport.

View Article and Find Full Text PDF

In 2014, a phase II randomised, double blind clinical trial assessing the efficacy of cholecalciferol (vitamin D3) in patients with a cervical trauma will be set up. This trial stems from previous studies showing that vitamin D supplementation improves functional recovery in rat models of peripheral or central nerve injury. In a first series of experiments, we used a rat model of peripheral nerve trauma to demonstrate the therapeutic efficiency of vitamin D.

View Article and Find Full Text PDF

The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OECs) are unique glia found only in the olfactory system. They retain exceptional plasticity and support olfactory neurogenesis and retargeting across the PNS:CNS boundary in the olfactory system. OECs have been shown to improve functional outcome when transplanted into rodents with spinal cord injury.

View Article and Find Full Text PDF

Autonomic dysreflexia is a common complication in high spinal cord injury and can result in serious consequences and death. Here we have examined the effect of acute transplantation of olfactory ensheathing cells on cardiovascular functions in rats. After T4 transection, radio-telemetric recording in conscious animals was used to study blood pressure and heart rate at rest and during autonomic dysreflexia for up to 8 weeks post-injury.

View Article and Find Full Text PDF

Parkinson's disease is a complex disorder characterized by degeneration of dopaminergic neurons in the substantia nigra in the brain. Stem cell transplantation is aimed at replacing dopaminergic neurons because the most successful drug therapies affect these neurons and their synaptic targets. We show here that neural progenitors can be grown from the olfactory organ of humans, including those with Parkinson's disease.

View Article and Find Full Text PDF

Multipotent stem cells are thought to be responsible for the generation of new neurons in the adult brain. Neurogenesis also occurs in an accessible part of the nervous system, the olfactory mucosa. We show here that cells from human olfactory mucosa generate neurospheres that are multipotent in vitro and when transplanted into the chicken embryo.

View Article and Find Full Text PDF

Several studies have demonstrated the potential of olfactory ensheathing cells for the repair of central and peripheral nerve injury. However, the majority of these studies have been performed with olfactory ensheathing cells derived from the olfactory bulbs, situated inside the skull. A more clinically relevant source of olfactory ensheathing cells is the olfactory mucosa, located in the nose.

View Article and Find Full Text PDF

There is an accumulation of evidence implicating a role for vitamin D(3) in the developing brain. The receptor for this seco-steroid is expressed in both neurons and glial cells, it induces nerve growth factor (NGF) and it is a potent inhibitor of mitosis and promoter of differentiation in numerous cells. We have therefore assessed the direct effect of vitamin D(3) on mitosis, neurite outgrowth, as well as NGF production as a possible mediator of those effects, in developing neurons.

View Article and Find Full Text PDF