The capacity of T cells to initiate anti-leukemia immune responses is determined by the ability of their receptors (TCRs) to recognize leukemia neoantigens. Epigenetic mechanisms including DNA methylation contribute to shaping the TCR repertoire composition and diversity. The DNA hypomethylating agents (HMAs) have been widely used in the treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS).
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a devastating hematologic malignancy that affects the hematopoietic stem cells. The 5-year overall survival (OS) of patients with AML is less than 30%, highlighting the urgent need to identify new therapeutic targets. Here, we analyze gene expression datasets for genes that are differentially overexpressed in AML cells compared with healthy hematopoietic cells.
View Article and Find Full Text PDFThe current model for spindle positioning requires attachment of the microtubule (MT) motor cytoplasmic dynein to the cell cortex, where it generates pulling force on astral MTs to effect spindle displacement. How dynein is anchored by cortical attachment machinery to generate large spindle-pulling forces remains unclear. Here, we show that cortical clustering of Num1, the yeast dynein attachment molecule, is limited by its assembly factor Mdm36.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected several millions and killed more than quarter of a million worldwide to date. Important questions have remained unanswered: why some patients develop severe disease, while others do not; and what roles do genetic variabilities play in the individual immune response to this viral infection. Here, we discuss the critical role T cells play in the orchestration of the antiviral response underlying the pathogenesis of the disease, COVID-19.
View Article and Find Full Text PDFBackground: Vimentin (VIM) is a type III intermediate filament that maintains cell integrity, and is involved in cell migration, motility and adhesion. When overexpressed in solid cancers, vimentin drives epithelial to mesenchymal transition (EMT) and ultimately, metastasis. The effects of its overexpression in AML are unclear.
View Article and Find Full Text PDF