Publications by authors named "John Battles"

Fire suppression and past selective logging of large trees have fundamentally changed frequent-fire-adapted forests in California. The culmination of these changes produced forests that are vulnerable to catastrophic change by wildfire, drought, and bark beetles, with climate change exacerbating this vulnerability. Management options available to address this problem include mechanical treatments (Mech), prescribed fire (Fire), or combinations of these treatments (Mech + Fire).

View Article and Find Full Text PDF

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured.

View Article and Find Full Text PDF
Article Synopsis
  • - This study is the first to evaluate live tree biomass in a mixed conifer forest during the late Holocene, revealing important insights into forest structure and stability over a millennium.
  • - It combines biomass data with Native oral histories and fire scar records to show that both natural lightning fires and intentional Native burning practices played a crucial role in maintaining forest conditions, beyond what climate alone can explain.
  • - The findings imply that restoring historical forest resiliency may require significant interventions, highlighting the lasting impact of Indigenous fire management on forest ecosystems.
View Article and Find Full Text PDF

An essential component of sustainable forest management is accurate monitoring of forest activities. Although monitoring efforts have generally increased for many forests throughout the world, in practice, effective monitoring is complex. Determining the magnitude and location of progress towards sustainability targets can be challenging due to diverse forest operations across multiple jurisdictions, the lack of data standardization, and discrepancies between field inspections and remotely-sensed records.

View Article and Find Full Text PDF

Range shifts of infectious plant disease are expected under climate change. As plant diseases move, emergent abiotic-biotic interactions are predicted to modify their distributions, leading to unexpected changes in disease risk. Evidence of these complex range shifts due to climate change, however, remains largely speculative.

View Article and Find Full Text PDF

Process ecosystem models are useful tools to provide insight on complex, dynamic ecological systems, and their response to disturbances. The biogeochemical model PnET-BGC was modified and tested using field observations from an experimentally whole-tree harvested northern hardwood watershed (W5) at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. In this study, the confirmed model was used as a heuristic tool to investigate long-term changes in hydrology, biomass accumulation, and soil solution and stream water chemistry for three different watershed cutting intensities (40%, 60%, 80%) and three rotation lengths (30, 60, 90 years) under both constant (current climate) and changing (MIROC5-RCP4.

View Article and Find Full Text PDF

Regional tree die-off events generate large quantities of standing dead wood, raising concern over catastrophic wildfire and other hazards. Governmental responses to tree die-off have often focused on incentivizing biomass energy production that utilizes standing dead trees removed for safety concerns. However, the full distribution of potential woody bioenergy feedstock after tree die-off has not been evaluated due to the complexities of surveying and precisely measuring large forested areas.

View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF

Resilience theory is increasingly applied to the management of global change impacts. There is growing concern, however, that misapplications of resilience-based management (RBM) can sometimes lead to undesirable outcomes. We address here an inescapable conundrum in the application of resilience theory: systems will need to track environmental change, but management that aims to support adaptive capacity can introduce undesirable levels of change.

View Article and Find Full Text PDF

Understanding the impacts of clear-cutting is critical to inform sustainable forest management associated with net primary productivity and nutrient availability over the long-term. Few studies have rigorously tested model simulations against field measurements which would provide more confidence in efforts to quantify logging impacts over the long-term. The biogeochemical model, PnET-BGC has been used to simulate forest production and stream chemistry at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA.

View Article and Find Full Text PDF

Historical forest conditions are often used to inform contemporary management goals because historical forests are considered to be resilient to ecological disturbances. The General Land Office (GLO) surveys of the late 19th and early 20th centuries provide regionally quasi-contiguous data sets of historical forests across much of the Western United States. Multiple methods exist for estimating tree density from point-based sampling such as the GLO surveys, including distance-based and area-based approaches.

View Article and Find Full Text PDF

Collaborative adaptive management is a process for making decisions about the environment in the face of uncertainty and conflict. Scientists have a central role to play in these decisions. However, while scientists are well trained to reduce uncertainty by discovering new knowledge, most lack experience with the means to mitigate conflict in contested situations.

View Article and Find Full Text PDF

In terrestrial ecosystems, a large portion (20-80%) of the dissolved Si (DSi) in soil solution has passed through vegetation. While the importance of this "terrestrial Si filter" is generally accepted, few data exist on the pools and fluxes of Si in forest vegetation and the rate of release of Si from decomposing plant tissues. We quantified the pools and fluxes of Si through vegetation and coarse woody debris (CWD) in a northern hardwood forest ecosystem (Watershed 6, W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA.

View Article and Find Full Text PDF

After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire.

View Article and Find Full Text PDF

Ecological research is increasingly concentrated at particular locations or sites. This trend reflects a variety of advantages of intensive, site-based research, but also raises important questions about the nature of such spatially delimited research: how well does site based research represent broader areas, and does it constrain scientific discovery? We provide an overview of these issues with a particular focus on one prominent intensive research site: the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. Among the key features of intensive sites are: long-term, archived data sets that provide a context for new discoveries and the elucidation of ecological mechanisms; the capacity to constrain inputs and parameters, and to validate models of complex ecological processes; and the intellectual cross-fertilization among disciplines in ecological and environmental sciences.

View Article and Find Full Text PDF

Ephemeral disturbances are common in many systems. Often, these brief events are assumed to be a nuisance with little long-term ecological impact. We quantified the impact of the ephemeral forest disturbance caused by gypsy moth canopy defoliation on exotic plant invasion in eight hardwood forests in the Delaware Water Gap National Recreation Area, USA.

View Article and Find Full Text PDF

Fuel treatment implementation in dry forest types throughout the western United States is likely to increase in pace and scale in response to increasing incidence of large wildfires. While it is clear that properly implemented fuel treatments are effective at reducing hazardous fire potential, there are ancillary ecological effects that can impact forest resilience either positively or negatively depending on the specific elements examined, as well as treatment type, timing, and intensity. In this study, we use overstory tree growth responses, measured seven years after the most common fuel treatments, to estimate forest health.

View Article and Find Full Text PDF

Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation error and multiple sources of shared variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals) make these data challenging to use for growth estimation.

View Article and Find Full Text PDF

Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial levels through natural weathering.

View Article and Find Full Text PDF

The widely held belief that riparian communities are highly invasible to exotic plants is based primarily on comparisons of the extent of invasion in riparian and upland communities. However, because differences in the extent of invasion may simply result from variation in propagule supply among recipient environments, true comparisons of invasibility require that both invasion success and propagule pressure are quantified. In this study, we quantified propagule pressure in order to compare the invasibility of riparian and upland forests and assess the accuracy of using a community's level of invasion as a surrogate for its invasibility.

View Article and Find Full Text PDF

In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival.

View Article and Find Full Text PDF

The successful invasion of exotic plants is often attributed to the absence of coevolved enemies in the introduced range (i.e., the enemy release hypothesis).

View Article and Find Full Text PDF