Voltage-gated sodium (Na) channels are pivotal for cellular signaling and mutations in Na channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function (GoF), loss-of-function (LoF) effects, or both. However, the mechanism behind this functional divergence of mutations at equivalent positions remains elusive.
View Article and Find Full Text PDFPolyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on the open-state hASIC3.
View Article and Find Full Text PDFLymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity.
View Article and Find Full Text PDFAcid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recent work has shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of ASIC1a is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1).
View Article and Find Full Text PDFLymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4 but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here we identify the domains of LRMP essential for regulation.
View Article and Find Full Text PDFAcid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recently it has been shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of the channel is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1).
View Article and Find Full Text PDFThe mitochondrial calcium uniporter is a Ca channel that imports cytoplasmic Ca into the mitochondrial matrix to regulate cell bioenergetics, intracellular Ca signaling, and apoptosis. The uniporter contains the pore-forming MCU subunit, an auxiliary EMRE protein, and the regulatory MICU1/MICU2 subunits. Structural and biochemical studies have suggested that MICU1 gates MCU by blocking/unblocking the pore.
View Article and Find Full Text PDFMolecular dynamics simulations reveal a putative interaction surface for PUFAs on TM1 of ASICs that is not tightly conserved between isoforms.
View Article and Find Full Text PDFHyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels are key regulators of subthreshold membrane potentials in excitable cells. The four mammalian HCN channel isoforms, HCN1-HCN4, are expressed throughout the body, where they contribute to diverse physiological processes including cardiac pacemaking, sleep-wakefulness cycles, memory, and somatic sensation. While all HCN channel isoforms produce currents when expressed by themselves, an emerging list of interacting proteins shape HCN channel excitability to influence the physiologically relevant output.
View Article and Find Full Text PDFAcid-sensing ion channels (ASICs) are sensitized to activation by inflammatory mediators such as the polyunsaturated fatty acid (PUFA) arachidonic acid (AA). Previous work has shown that AA can potentiate ASIC currents at subsaturating proton concentrations, but the structural mechanisms of this change in gating are not understood. Here we show that PUFAs cause multiple gating changes in ASIC3, including shifting the pH dependence of activation, slowing the rate of desensitization, and increasing the current even at a saturating pH.
View Article and Find Full Text PDFChannels (Austin)
December 2021
Acid-sensing ion channels (ASICs) are a family of proton-gated cation channels that contribute to a diverse array of functions including pain sensation, cell death during ischemia, and more broadly to neurotransmission in the central nervous system. There is an increasing interest in understanding the physiological regulatory mechanisms of this family of channels. ASICs have relatively short N- and C-termini, yet a number of proteins have been shown to interact with these domains both and .
View Article and Find Full Text PDFIon channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins.
View Article and Find Full Text PDFStomatin (STOM) is a monotopic integral membrane protein found in all classes of life that has been shown to regulate members of the acid-sensing ion channel (ASIC) family. However, the mechanism by which STOM alters ASIC function is not known. Using chimeric channels, we combined patch-clamp electrophysiology and FRET to search for regions of ASIC3 critical for binding to and regulation by STOM.
View Article and Find Full Text PDFTRIP8b, an accessory subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels, alters both the cell surface expression and cyclic nucleotide dependence of these channels. However, the mechanism by which TRIP8b exerts these dual effects is still poorly understood. In addition to binding to the carboxyl-terminal tripeptide of HCN channels, TRIP8b also binds directly to the cyclic nucleotide-binding domain (CNBD).
View Article and Find Full Text PDFHyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cyclic AMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels.
View Article and Find Full Text PDFThe ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability.
View Article and Find Full Text PDFNitrate is a primary nutrient for plant growth, but its levels in soil can fluctuate by several orders of magnitude. Previous studies have identified Arabidopsis NRT1.1 as a dual-affinity nitrate transporter that can take up nitrate over a wide range of concentrations.
View Article and Find Full Text PDFRationale: The antianginal ranolazine blocks the human ether-a-go-go-related gene-based current IKr at therapeutic concentrations and causes QT interval prolongation. Thus, ranolazine is contraindicated for patients with preexisting long-QT and those with repolarization abnormalities. However, with its preferential targeting of late INa (INaL), patients with disease resulting from increased INaL from inherited defects (eg, long-QT syndrome type 3 or disease-induced electric remodeling (eg, ischemic heart failure) might be exactly the ones to benefit most from the presumed antiarrhythmic properties of ranolazine.
View Article and Find Full Text PDFIon channels operate in intact tissues as part of large macromolecular complexes that can include cytoskeletal proteins, scaffolding proteins, signaling molecules, and a litany of other molecules. The proteins that make up these complexes can influence the trafficking, localization, and biophysical properties of the channel. TRIP8b (tetratricopetide repeat-containing Rab8b-interacting protein) is a recently discovered accessory subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that contributes to the substantial dendritic localization of HCN channels in many types of neurons.
View Article and Find Full Text PDFThe congenital long QT syndrome (LQTS) is a heritable arrhythmia in which mutations in genes coding for ion channels or ion channel associated proteins delay ventricular repolarization and place mutation carriers at risk for serious or fatal arrhythmias. Triggers and therapeutic management of LQTS arrhythmias have been shown to differ in a manner that depends strikingly on the gene that is mutated. Additionally, beta-blockers, effective in the management of LQT-1, have been thought to be potentially proarrhythmic in the treatment of LQT-3 because of concomitant slowing of heart rate that accompanies decreased adrenergic activity.
View Article and Find Full Text PDFThe cardiac-delayed rectifier K(+) current (I(KS)) is carried by a complex of KCNQ1 (Q1) subunits, containing the voltage-sensor domains and the pore, and auxiliary KCNE1 (E1) subunits, required for the characteristic I(KS) voltage dependence and kinetics. To locate the transmembrane helix of E1 (E1-TM) relative to the Q1 TM helices (S1-S6), we mutated, one at a time, the first four residues flanking the extracellular ends of S1-S6 and E1-TM to Cys, coexpressed all combinations of Q1 and E1 Cys-substituted mutants in CHO cells, and determined the extents of spontaneous disulfide-bond formation. Cys-flanking E1-TM readily formed disulfides with Cys-flanking S1 and S6, much less so with the S3-S4 linker, and not at all with S2 or S5.
View Article and Find Full Text PDFCo-assembly of KCNQ1 with different accessory, or beta, subunits that are members of the KCNE family results in potassium (K+) channels that conduct functionally distinct currents. The alpha subunit KCNQ1 conducts a slowly activated delayed rectifier K+ current (IKs), a major contributor to cardiac repolarization, when co-assembled with KCNE1 and channels that favor the open state when co-assembled with either KCNE2 or KCNE3. In the heart, stimulation of the sympathetic nervous system enhances IKs.
View Article and Find Full Text PDFInherited mutations of SCN5A, the gene that encodes Na(V)1.5, the alpha subunit of the principle voltage-gated Na(+) channel in the heart, cause congenital Long QT Syndrome variant 3 (LQT-3) by perturbation of channel inactivation. LQT-3 mutations induce small, but aberrant, inward current that prolongs the ventricular action potential and subjects mutation carriers to arrhythmia risk dictated in part by the biophysical consequences of the mutations.
View Article and Find Full Text PDF