Armor-penetrating projectiles and fragments of depleted uranium (DU) have been deposited in soils at weapon-tested sites. Soil samples from these military facilities were analyzed by inductively coupled plasma-optical emission spectroscopy and X-ray diffraction to determine U concentrations and transport across an arid ecosystem. Under arid conditions, both vertical transport driven by evaporation (upward) and leaching (downward) and horizontal transport of U driven by surface runoff in the summer were observed.
View Article and Find Full Text PDFUranium (U) is a ubiquitous trace element in soils. With increasing in application of U in nuclear energy and nuclear weapon, a large amount of U was dissipated into the environment including soil and water. Earthworm may be an eco-indicator for U bioaccumulation, transformation and transport across the ecosystem.
View Article and Find Full Text PDFUranium is a naturally occurring radioactive trace element found in rocks, soils, and coals. U may contaminate groundwater and soil from nuclear power plant operations, spent fuel reprocessing, high-level waste disposal, ore mining and processing, or manufacturing processes. Yuma Proving Ground in Arizona, USA has been used depleted uranium ballistics for 36 years where U has accumulated in this army testing site.
View Article and Find Full Text PDFBackground: Microfocused ultrasound with visualization (MFU-V; Ultherapy , Merz North America) is US Food and Drug Administration-cleared as a non-invasive procedure that lifts the soft tissue of the neck, submentum and brow, and improves lines and wrinkles on the upper chest. Several other energy-based devices are in use in countries outside the USA where they are marketed for indications similar to those of MFU-V, although published studies supporting these indications are limited and none of the other devices provides visualization or verification they reach the superficial musculoaponeurotic system.
Methods: Due to the evolving landscape of ultrasound technology as more devices enter the market, seven global thought leaders who are qualified experts on the use of various high-intensity focused ultrasound (HIFU)/MFU-V technologies convened to review data from an independent evaluation of the software, thermal characteristics, transducer acoustics and ultrasound therapy of MFU-V and three other ultrasound-based devices.
A modification method of clay mineral surface was developed to improve its adsorption capacity of uranium. Uranium is a radionuclide with high toxicity and extremely long half-life, which can pollute the environment and endanger human health. This study proposes a new method of activation of clay mineral surface with phosphoric acid for rapid adsorption of uranium from aqueous solution.
View Article and Find Full Text PDFACS Earth Space Chem
February 2021
The geometry of the glutamatergic mossy-parallel fibre and climbing fibre inputs to cerebellar cortical Purkinje cells has powerfully influenced thinking about cerebellar functions. The compartmentation of the cerebellum into parasagittal zones, identifiable in olivo-cortico-nuclear projections, and the trajectories of the parallel fibres, transverse to these zones and following the long axes of the cortical folia, are particularly important. Two monoaminergic afferent systems, the serotonergic and noradrenergic, are major inputs to the cerebellar cortex but their architecture and relationship with the cortical geometry are poorly understood.
View Article and Find Full Text PDFBiochar is a stable carbon rich by-product synthesized through pyrolysis of plant and animal based biomass, and nano-biochar material has gained increasing attention due to its unique properties for environmental applications. In the present study, a simple cost-effective method for the synthesis of biochar nanoparticles through hydrothermally using agricultural residuals and by-products was developed. Both soybean straw and cattle manure were selected as the feedstock to produce the bulk-biochar.
View Article and Find Full Text PDFA novel laboratory simulation system has been developed for the study of the corrosion of uranium metal in soils. Corrosion and transportation of depleted uranium (DU) as the metal undergoes weathering as a buried material within the soil environment. The corrosion of uranium metal in soil was not well understood due to the gas-liquid-solid phase of the soil.
View Article and Find Full Text PDFAfter depleted uranium (DU) is deposited in the environment, it corrodes producing mobile uranium species. The upward transport mechanism in a desert landscape is associated with the dissolution/precipitation of uranium minerals that vary in composition and solubility in soil pore water. The objective of this study is to develop the laboratory column simulation to investigate the upward transport mechanism with cyclic capillary wetting and drying moisture regimes.
View Article and Find Full Text PDFElectrokinetic-enhanced phytoremediation is an effective technology to decontaminate heavy metal contaminated soil. In this study, we examined the effects of electrokinetic treatments on plant uptake and bioaccumulation of U from soils with various U sources. Redistribution of uranium in soils as affected by planting and electrokinetic treatments was investigated.
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2019
Humic acid (HA) is well known as an inexpensive and effective adsorbent for heavy metal ions. However, the thermodynamics of uranium (U) adsorption onto HA is not fully understood. This study aimed to understand the kinetics and isotherms of U(VI) adsorption onto HA under different temperatures from acidic water.
View Article and Find Full Text PDFLaboratory studies using metal spiked soils are challenging due to soil heterogeneity. This work provides an easy, quick, precise, and accurate technique for the preparation of spiked soils for laboratory research. The process described spiking soil with various uranium species and other heavy metals for laboratory scale pilot experiments under various biogeochemical conditions.
View Article and Find Full Text PDFNear-infrared (NIR) spectroscopy is a high-throughput method to analyze the near-infrared region of the electromagnetic spectrum. It detects the absorption of light by molecular bonds and can be used with live insects. In this study, we investigate the accuracy of NIR spectroscopy in determining triglyceride level and species of wild-caught .
View Article and Find Full Text PDFWe examined the feasibility of a thermal imager smart phone attachment as a potential proxy of skin perfusion by assessing shifts in skin temperature following administration of the vasodilatory anesthetic propofol. Four limb distal extremity thermal images were taken before propofol administration and at 5-min intervals thereafter during monitored anesthesia. The study enrolled 60 patients with ages ranging from 1.
View Article and Find Full Text PDFAblation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm's properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm's physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures.
View Article and Find Full Text PDFThe occurrence of uranium (U) and depleted uranium (DU)-contaminated wastes from anthropogenic activities is an important environmental problem. Insoluble humic acid derived from leonardite (L-HA) was investigated as a potential adsorbent for immobilizing U in the environment. The effect of initial pH, contact time, U concentration, and temperature on U(VI) adsorption onto L-HA was assessed.
View Article and Find Full Text PDFMitochondria are found in all animals and have the unique feature of containing multiple copies of their own small, circular DNA genome (mtDNA). The rate and pattern of mutation accumulation in the mtDNA are influenced by molecular, cellular and population level processes. We distinguish between inherited and somatic mtDNA mutations and review evidence for the often-made assumption that mutations accumulate at a higher rate in mtDNA than in nuclear DNA (nDNA).
View Article and Find Full Text PDFIn invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
February 2015
Mitochondria, the energy-generating organelles, play a role in numerous cellular functions including adenosine triphosphate (ATP) production, cellular homeostasis, and apoptosis. Maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) is universally observed in humans and most animals. In general, high levels of mitochondrial heteroplasmy might contribute to a detrimental effect on fitness and disease resistance.
View Article and Find Full Text PDFObjective: To investigate the feasibility of using high-intensity focused ultrasound (HIFU), under dual-mode ultrasound arrays (DMUAs) guidance, to induce localized thermal damage inside ovaries without damage to the ovarian surface.
Design: Laboratory feasibility study.
Setting: University-based laboratory.
IEEE Trans Biomed Eng
October 2013
A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array, and modular multichannel transmitter/receiver.
View Article and Find Full Text PDFAlthough crucial to the success of fertilization and embryogenesis, little is known about the mitochondrial DNA (mtDNA) content of mature spermatozoa and oocytes across taxa and across different fertilization systems. Oocytes are assumed to hold a large population of mtDNAs that populate emerging cells during early embryogenesis, whereas spermatozoa harbor only a limited pool of mtDNAs that is believed to sustain functionality but fails to contribute paternal mtDNA to the zygote. Recent work suggests that mature sperm of the genetic model Drosophila melanogaster lack mtDNA, questioning the significance of zygotic mechanisms for the selective elimination of paternal mtDNA and their necessity for fertilization success.
View Article and Find Full Text PDF