Front Endocrinol (Lausanne)
November 2024
Objective: Estrogen-related receptor γ (ERRγ) is a metabolic regulator with no identified physiological ligands. This study investigates whether calcium is an ERRγ ligand that mediates the effects of glucagon and whether cadmium, which mimics the effects of calcium, disrupts metabolism through ERRγ.
Method: HepG2, MCF-7, and HEK293T transfected with ERRγ were treated with glucagon, calcium, cadmium, ERRγ agonist, or ERRγ inhibitor.
Front Endocrinol (Lausanne)
August 2024
The estrogen receptor alpha (ERα) plays a central role in the etiology, progression, and treatment of breast cancers. Constitutively activating somatic mutations Y537S and D538G, in the ligand binding domain (LBD) of , are associated with acquired resistance to endocrine therapies. We have previously shown that the metalloestrogen calcium activates ERα through an interaction with the LBD of the receptor.
View Article and Find Full Text PDFApproximately one-third of estrogen receptor (ER) positive breast tumors fail to respond to or become resistant to hormonal therapy. Although the mechanisms responsible for hormone resistance are not completely understood, resistance is associated with alterations in ERα; overexpression of proteins that interact with the receptor; and hormone-independent activation of the receptor by growth factor signal transduction pathways. Our previous studies show that in estrogen dependent breast cancer cells, activation of the epidermal growth factor signaling pathway increases intracellular calcium which binds to and activates ERα through sites in the ligand-binding domain of the receptor and that treatment with extracellular calcium increases the concentration of intracellular calcium which activates ERα and induces hormone-independent cell growth.
View Article and Find Full Text PDF