Publications by authors named "John B Pethica"

This paper investigates molecular-scale polymer mechanical deformation during large-strain squeeze flow of polystyrene (PS) films, where the squeeze flow gap is close to the polymer radius of gyration (R(g)). Stress-strain and creep relations were measured during flat punch indentation from an initial film thickness of 170 nm to a residual film thickness of 10 nm in the PS films, varying molecular weight (M(w)) and deformation stress rate by over 2 orders of magnitude while temperatures ranged from 20 to 125 degrees C. In stress-strain curves exhibiting an elastic-to-plastic yield-like knee, the response was independent of M(w), as expected from bulk theory for glassy polymers.

View Article and Find Full Text PDF

The squeezing of polymers in narrow gaps is important for the dynamics of nanostructure fabrication by nanoimprint embossing and the operation of polymer boundary lubricants. We measured stress versus strain behavior while squeezing entangled polystyrene films to large strains. In confined conditions where films were prepared to a thickness less than the size of the bulk macromolecule, resistance to deformation was markedly reduced for both solid-glass forging and liquid-melt molding.

View Article and Find Full Text PDF

We have developed an atomic force microscopy (AFM) technique that can perform simultaneous normal and shear stiffness measurements of nanoconfined liquids with angstrom-range amplitudes. The AFM technique is based on a fiber-interferometric, small-amplitude, off-resonance AFM. This AFM is capable of providing linear quasistatic measurements of the local mechanical properties of confined liquid layers while only minimally disturbing the layers themselves.

View Article and Find Full Text PDF

We present modifications to conventional nanoindentation that realize variable temperature, flat punch indentation of ultrathin films. The technique provides generation of large strain, thin film extrusion of precise geometries that idealize the essential flows of nanoimprint lithography, and approximate constant area squeeze flow rheometry performed on thin, macroscopic soft matter samples. Punch radii as small as 185 nm have been realized in ten-to-one confinement ratio testing of 36 nm thick polymer films controllably squeezed in the melt state to a gap width of a few nanometers.

View Article and Find Full Text PDF

The mechanical patterning of thin films has received recent attention due to significant potential for efficient nanostructure fabrication. For solid films, mechanically thinning wide areas remains particularly challenging. In this work, we introduce a new plastic ratchet mechanism involving small amplitude (<10 nm), oscillatory shear motion of the forging die.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionphjeldintup3iubl8so35k9jea6kt4d6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once