The non-muscle actomyosin cytoskeleton generates contractile force through the dynamic rearrangement of its constituent parts. Actomyosin rings are a specialization of the non-muscle actomyosin cytoskeleton that drive cell shape changes during division, wound healing, and other events. Contractile rings throughout phylogeny and in a range of cellular contexts are built from conserved components including non-muscle myosin II (NMMII), actin filaments (F-actin), and crosslinking proteins.
View Article and Find Full Text PDFDuring zygotic mitosis in many species, forces generated at the cell cortex are required for the separation and migration of paternally provided centrosomes, pronuclear migration, segregation of genetic material, and cell division. Furthermore, in some species, force-generating interactions between spindle microtubules and the cortex position the mitotic spindle asymmetrically within the zygote, an essential step in asymmetric cell division. Understanding the mechanical and molecular mechanisms of microtubule-dependent force generation and therefore asymmetric cell division requires identification of individual cortical force-generating units .
View Article and Find Full Text PDFCytoskeleton (Hoboken)
April 2022
Actin assemblies are important in motile cells such as leukocytes, which form dynamic plasma membrane extensions or podia. L-plastin (LCP1) is a leukocyte-specific calcium-dependent actin-bundling protein that, in mammals, is known to affect immune cell migration. Previously, we generated CRISPR/Cas9 engineered zebrafish lacking L-plastin (lcp1-/-) and reported that they had reduced survival to adulthood, suggesting that lack of this actin-bundler might negatively affect the immune system.
View Article and Find Full Text PDF