Publications by authors named "John Asbury"

Many applications of transition metal dichalcogenides (TMDs) involve transfer to functional substrates that can strongly impact their optical and electronic properties. We investigate the impact that substrate interactions have on free carrier densities and defect-related excitonic (X) emission from MoS monolayers grown by metal-organic chemical vapor deposition. C-plane sapphire substrates mimic common hydroxyl-terminated substrates.

View Article and Find Full Text PDF

The nanocrystal-ligand boundaries of colloidal quantum dots (QDs) mediate charge and energy transfer processes that underpin photochemical and photocatalytic transformations at their surfaces. We used time-resolved infrared spectroscopy combined with transient electronic spectroscopy to probe vibrational modes of the carboxylate anchoring groups of stearate ligands attached to cadmium selenide (CdSe) QDs that were optically excited in solid nanocrystal films. The vibrational frequencies of surface-bonded carboxylate groups revealed their interactions with surface-localized holes in the excited states of the QDs.

View Article and Find Full Text PDF

All-polymer solar cells (all-PSCs) offer improved morphological and mechanical stability compared with those containing small-molecule-acceptors (SMAs). They can be processed with a broader range of conditions, making them desirable for printing techniques. In this study, we report a high-performance polymer acceptor design based on bithiazole linker (PY-BTz) that are on par with SMAs.

View Article and Find Full Text PDF

The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat-induced reversal remains unclear. This work finds that dynamic disorder-induced localization of self-trapped polarons and thermal disorder-induced strain (TDIS) can be co-acting drivers of reverse segregation.

View Article and Find Full Text PDF

We investigated the interplay of matrix dynamics with the molecular dynamics of a thermally activated delayed fluorescence (TADF) emitter, NAI-DMAC, to identify factors that influence the photophysical processes leading to TADF. The matrix dynamics surrounding NAI-DMAC molecules were varied continuously from the liquid to the solid state by depositing toluene solutions containing poly(methyl methacrylate) (PMMA) and NAI-DMAC onto optical substrates. We monitored changes of the NAI-DMAC emission as the liquid films dried to form solid PMMA films using temperature- and time-resolved photoluminescence spectroscopy.

View Article and Find Full Text PDF

Substitutionally doped 2D transition metal dichalcogenides are primed for next-generation device applications such as field effect transistors (FET), sensors, and optoelectronic circuits. In this work, we demonstrate substitutional rhenium (Re) doping of MoS monolayers with controllable concentrations down to 500 ppm by metal-organic chemical vapor deposition (MOCVD). Surprisingly, we discover that even trace amounts of Re lead to a reduction in sulfur site defect density by 5-10×.

View Article and Find Full Text PDF

We investigate the role of molecular dynamics in the luminescent properties of a prototypical thermally activated delayed fluorescence (TADF) emitter, NAI-DMAC, in solution using a combination of temperature dependent time-resolved photoluminescence and absorption spectroscopies. We use a glass forming liquid, 2-methylfuran, to introduce an abrupt change in the temperature dependent diffusion dynamics of the solvent and examine the influence this has on the emission intensity of NAI-DMAC molecules. Comparison of experiment with first principles molecular dynamics simulations reveals that the emission intensity of NAI-DMAC molecules follows the temperature-dependent self-diffusion dynamics of the solvent.

View Article and Find Full Text PDF

Singlet fission is a process in conjugated organic materials that has the potential to considerably improve the performance of devices in many applications, including solar energy conversion. In any application involving singlet fission, efficient triplet harvesting is essential. At present, not much is known about molecular packing arrangements detrimental to singlet fission.

View Article and Find Full Text PDF

The ligand-nanocrystal boundaries of colloidal quantum dots (QDs) mediate the primary energy and electron transfer processes that underpin photochemical and photocatalytic transformations at their surfaces. We use mid-infrared transient absorption spectroscopy to reveal the influence that ligand structure and bonding to nanocrystal surfaces have on the changes of the excited state surface chemistry of this boundary in PbS QDs and the corresponding impact on charge transfer processes between nanocrystals. We demonstrate that oleate ligands undergo marked changes in their bonding to surfaces in the excitonic excited states of the nanocrystals, indicating that oleate passivated PbS surfaces undergo significant structural changes following photoexcitation.

View Article and Find Full Text PDF

One of the most exciting and debated aspects of polariton chemistry is the possibility that chemical reactions can be catalyzed by vibrational strong coupling (VSC) with confined optical modes in the absence of external illumination. Here, we report an attempt to reproduce the enhanced rate of cyanate ion hydrolysis reported by Hiura et al. [chemRxiv:7234721 (2019)] when the collective OH stretching vibrations of water (which is both the solvent and a reactant) are strongly coupled to a Fabry-Pérot cavity mode.

View Article and Find Full Text PDF

The role of dipolar motion of organic cations in the A-sites of halide perovskites has been debated in an effort to understand why these materials possess such remarkable properties. Here, we show that the dipolar motion of cations such as methylammonium (MA) or formamidinium (FA) versus cesium (Cs) does not influence large polaron binding energies, delocalization lengths, formation times, or bimolecular recombination lifetimes in lead bromide perovskites containing only one type of A-site cation. We directly probe the transient absorption spectra of large polarons throughout the entire mid-infrared and resolve their dynamics on time scales from sub-100 fs to sub-μs using time-resolved mid-infrared spectroscopy.

View Article and Find Full Text PDF

The ligand shell around colloidal quantum dots mediates the electron and energy transfer processes that underpin their use in optoelectronic and photocatalytic applications. Here, we show that the surface chemistry of carboxylate anchoring groups of oleate ligands passivating PbS quantum dots undergoes significant changes when the quantum dots are excited to their excitonic states. We directly probe the changes of surface chemistry using time-resolved mid-infrared spectroscopy that records the evolution of the vibrational frequencies of carboxylate groups following excitation of the electronic states.

View Article and Find Full Text PDF

While organic donor-acceptor (D-A) molecules are widely employed in multiple areas, the application of more D-A molecules could be limited because of an inherent polarity sensitivity that inhibits photochemical processes. Presented here is a facile chemical modification to attenuate solvent-dependent mechanisms of excited-state quenching through addition of a β-carbonyl-based polar substituent. The results reveal a mechanism wherein the β-carbonyl substituent creates a structural buffer between the donor and the surrounding solvent.

View Article and Find Full Text PDF

We use native vibrational modes of the model singlet fission chromophore 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) to examine the origins of singlet fission in solution between molecules that are not tethered by a covalent linkage. We use the C-H stretch modes of TIPS side groups of TIPS-Pn to demonstrate that singlet fission does not occur by diffusive encounter of independent molecules in solution. Instead, TIPS-Pn molecules aggregate in solution through their TIPS side groups.

View Article and Find Full Text PDF

Despite significant recent progress, much about the mechanism for charge photogeneration in organic photovoltaics remains unknown. Here, we use conjugated block copolymers as model systems to examine the effects of energetic and entropic driving forces in organic donor-acceptor materials. The block copolymers are designed such that an electron donor block and an electron acceptor block are covalently linked, embedding a donor-acceptor interface within the molecular structure.

View Article and Find Full Text PDF

Singlet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood.

View Article and Find Full Text PDF

Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes.

View Article and Find Full Text PDF

We report strong coupling between light and polaron optical excitations in a doped organic semiconductor microcavity at room temperature. Codepositing MoO_{3} and the hole transport material 4, 4^{'}-cyclohexylidenebis[N, N-bis(4-methylphenyl)benzenamine] introduces a large hole density with a narrow linewidth optical transition centered at 1.8 eV and an absorption coefficient exceeding 10^{4}  cm^{-1}.

View Article and Find Full Text PDF

Ultrafast vibrational spectroscopy in the mid-infrared spectral range provides the opportunity to probe the dynamics of electronic states involved in all stages of the singlet fission reaction through their unique vibrational frequencies. This capability is demonstrated using a model singlet fission chromophore, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn). The alkyne groups of the TIPS side chains are coupled to the conjugated framework of the pentacene cores, enabling direct examination of the dynamics of triplet excitons that have successfully separated from correlated triplet pair states in crystalline films of TIPS-Pn.

View Article and Find Full Text PDF

Ultrafast vibrational spectroscopy in the mid-infrared was used to directly probe the delocalization of excitons in two different perylenediimide (PDI) derivatives that are predicted to preclude the formation of excimers, which can act as trap sites for excited state energy in organic semiconductors. We identified vibrational modes within the conjugated C-C stretch modes of PDI molecules whose frequencies reported the interactions of molecules within delocalized excitonic states. The vibrational linewidths of these modes, which we call intermolecular coordinate coupled (ICC) modes, provided a direct probe of the extent of exciton delocalization among the PDI molecules, which was confirmed using X-ray diffraction and electro-absorption spectroscopy.

View Article and Find Full Text PDF

Phosphor-converted light emitting diodes (pcLEDs) produce white light through the use of phosphors that convert blue light emitted from the LED chip into green and red wavelengths. Understanding the mechanisms of degradation of the emission spectra and quantum yields of the phosphors used in pcLEDs is of critical importance to fully realize the potential of solid-state lighting as an energy efficient technology. Toward this end, time-resolved photoluminescence spectroscopy was used to identify the mechanistic origins of enhanced stability and luminescence efficiency that can be obtained from a series of carbidonitride red phosphors with varying degrees of substitutional carbon.

View Article and Find Full Text PDF

The multiplication of excitons in organic semiconductors via singlet fission offers the potential for photovoltaic cells that exceed the Shockley-Quiesser limit for single-junction devices. To fully utilize the potential of singlet fission sensitizers in devices, it is necessary to understand and control the diffusion of the resultant triplet excitons. In this work, a new processing method is reported to systematically tune the intermolecular order and crystalline structure in films of a model singlet fission chromophore, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn), without the need for chemical modifications.

View Article and Find Full Text PDF

A dispersive nanosecond transient absorption instrument was developed to enable rapid time-resolved and steady-state measurements in the mid-infrared (mid-IR) region for thin films without the need for gated integrators or lock-in amplifiers. Two detectors are used depending on the experimental needs (100 MHz and 16 MHz) with time resolution from nano-millisecond and spectral coverage from 1000-5000 cm (2000-10 000 nm). The instrument utilizes flexible digitization resolution (8 bit to 14 bit) to enable high sensitivity (10) measurements on thin films under low excitation (<50 µJ/cm).

View Article and Find Full Text PDF

Singlet fission is an excitation multiplication process in molecular systems that can circumvent energy losses and significantly boost solar cell efficiencies; however, the nature of a critical intermediate that enables singlet fission and details of its evolution into multiple product excitations remain obscure. We resolve the initial sequence of events comprising the fission of a singlet exciton in solids of pentacene derivatives using femtosecond transient absorption spectroscopy. We propose a three-step model of singlet fission that includes two triplet-pair intermediates and show how transient spectroscopy can distinguish initially interacting triplet pairs from those that are spatially separated and noninteracting.

View Article and Find Full Text PDF

The electronic properties of organo-halide perovskite absorbers described in the literature have been closely associated with their morphologies and processing conditions. However, the underlying origins of this dependence remain unclear. A combination of inorganic synthesis, surface chemistry, and time-resolved photoluminescence spectroscopy was used to show that charge recombination centers in organo-halide perovskites are almost exclusively localized on the surfaces of the crystals rather than in the bulk.

View Article and Find Full Text PDF