Publications by authors named "John Asara"

The de novo purine synthesis pathway is fundamental for nucleic acid production and cellular energetics, yet the role of mitochondrial metabolism in modulating this process remains underexplored. In many cancers, metabolic reprogramming supports rapid proliferation and survival, but the specific contributions of the tricarboxylic acid (TCA) cycle enzymes to nucleotide biosynthesis are not fully understood. Here, we demonstrate that the TCA cycle enzyme succinate dehydrogenase (SDH) is essential for maintaining optimal de novo purine synthesis in normal and cancer cells.

View Article and Find Full Text PDF

Vitamin C (vitC) is essential for health and shows promise in treating diseases like cancer, yet its mechanisms remain elusive. Here, we report that vitC directly modifies lysine residues to form "vitcyl-lysine"-a process termed vitcylation. Vitcylation occurs in a dose-, pH-, and sequence-dependent manner in both cell-free systems and living cells.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The primary causes of COPD are environmental, including cigarette smoking; however, genetic susceptibility also contributes to COPD risk. Genome-Wide Association Studies (GWASes) have revealed more than 80 genetic loci associated with COPD, leading to the identification of multiple COPD GWAS genes.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.

View Article and Find Full Text PDF

Activation of anaplerosis takes away glutamine from the biosynthetic pathways to the energy-producing TCA cycle. Especially, induction of hyperoxia driven anaplerosis in neurovascular tissues such as the retina during early stages of development could deplete biosynthetic precursors from newly proliferating endothelial cells impeding physiological angiogenesis and leading to vasoobliteration. Using an oxygen-induced retinopathy (OIR) mouse model, we investigated the metabolic differences between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains at system levels to understand the molecular underpinnings that potentially contribute to hyperoxia-induced vascular abnormalities in the neural retina.

View Article and Find Full Text PDF

Unlabelled: Epstein-Barr virus (EBV) is associated with multiple types of cancers, many of which express the key viral oncoprotein Latent Membrane Protein 1 (LMP1). LMP1 is the only EBV-encoded protein whose expression is sufficient to transform both epithelial and B-cells. Although metabolism reprogramming is a cancer hallmark, much remains to be learned about how LMP1 alters lymphocyte oncometabolism.

View Article and Find Full Text PDF

Tyrosine phosphorylation of metabolic enzymes is an evolutionarily conserved posttranslational modification that facilitates rapid and reversible modulation of enzyme activity, localization, or function. Despite the high abundance of tyrosine phosphorylation events detected on metabolic enzymes in high-throughput mass spectrometry-based studies, functional characterization of tyrosine phosphorylation sites has been limited to a subset of enzymes. Since tyrosine phosphorylation is dysregulated across human diseases, including cancer, understanding the consequences of metabolic enzyme tyrosine phosphorylation events is critical for informing disease biology and therapeutic interventions.

View Article and Find Full Text PDF

Systemic levels of methylmalonic acid (MMA), a byproduct of propionate metabolism, increase with age and MMA promotes tumor progression via its direct effects in tumor cells. However, the role of MMA in modulating the tumor ecosystem remains to be investigated. The proliferation and function of CD8 T cells, key anti-tumor immune cells, declines with age and in conditions of vitamin B12 deficiency, which are the two most well-established conditions that lead to increased systemic levels of MMA.

View Article and Find Full Text PDF

Preoperative risk biomarkers for delirium may aid in identifying high-risk patients and developing intervention therapies, which would minimize the health and economic burden of postoperative delirium. Previous studies have typically used single omics approaches to identify such biomarkers. Preoperative cerebrospinal fluid (CSF) from the Healthier Postoperative Recovery study of adults ≥ 63 years old undergoing elective major orthopedic surgery was used in a matched pair delirium case-no delirium control design.

View Article and Find Full Text PDF

Neuronal cells are highly specialized cells and have a specific metabolic profile to support their function. It has been demonstrated that the metabolic profiles of different cells/tissues undergo significant reprogramming with advancing age, which has often been considered a contributing factor towards aging-related diseases including Alzheimer's (AD) and Parkinson's (PD) diseases. However, it is unclear if the metabolic changes associated with normal aging predispose neurons to disease conditions or a distinct set of metabolic alterations happen in neurons in AD or PD which might contribute to disease pathologies.

View Article and Find Full Text PDF
Article Synopsis
  • Severe alcohol-associated hepatitis (AH) is a serious liver disease characterized by increased neutrophil infiltration, but the impact of alcohol on neutrophil function is still not fully understood.
  • Researchers discovered that Bruton's tyrosine kinase (BTK) is elevated in neutrophils of AH patients and is activated by alcohol through TLR4 signaling, linked to liver damage.
  • In mouse models, inhibiting BTK or knocking it out in specific immune cells reduced neutrophil activity and damage to the liver, suggesting that targeting BTK and its interaction with CD84 might offer new treatments for AH.
View Article and Find Full Text PDF

Introduction: Mesoamerican nephropathy (MeN) is a chronic kidney disease (CKD) which may be caused by recurrent acute kidney injury (AKI). We investigated urinary quinolinate-to-tryptophan ratio (Q/T), a validated marker of nicotinamide adenine dinucleotide (NAD+) biosynthesis that is elevated during ischemic and inflammatory AKI, in a sugarcane worker population in Nicaragua with high rates of MeN.

Methods: Among 693 male sugarcane workers studied, we identified 45 who developed AKI during the harvest season.

View Article and Find Full Text PDF
Article Synopsis
  • B-lymphocytes are crucial for the immune system, producing antibodies and influencing T-cell responses, but the mechanisms behind their activation and differentiation in response to various stimuli are not fully understood.
  • A study examined how human B-cells respond to different receptors like BCR, TLR9, and CD40L, revealing that co-stimulation from BCR/TLR9 leads to increased PD-L1 expression and enhanced metabolism through NAD and oxidative processes.
  • The research found that inhibiting the enzyme BCAT1, which is involved in amino acid synthesis and cell growth, reduced the effectiveness of BCR/TLR9 stimulation but not that of CD40L/IL4, highlighting BCAT1 as a potential target for new
View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) has a low 5-year survival rate of 13%, and most patients develop resistance to chemotherapy.
  • Researchers discovered that overexpression of isocitrate dehydrogenase 1 (IDH1) in PDAC cells helps them survive chemotherapy by aiding mitochondrial function and managing oxidative stress.
  • Inhibiting IDH1 with the drug ivosidenib alongside standard chemotherapy not only boosts treatment effectiveness in lab studies but is also being tested in clinical trials for potential application in patient care.
View Article and Find Full Text PDF

Most Epstein-Barr virus-associated gastric carcinoma (EBVaGC) harbor non-silent mutations that activate phosphoinositide 3 kinase (PI3K) to drive downstream metabolic signaling. To gain insights into PI3K/mTOR pathway dysregulation in this context, we performed a human genome-wide CRISPR/Cas9 screen for hits that synergistically blocked EBVaGC proliferation together with the PI3K antagonist alpelisib. Multiple subunits of carboxy terminal to LisH (CTLH) E3 ligase, including the catalytic MAEA subunit, were among top screen hits.

View Article and Find Full Text PDF

Individual tissues perform highly specialized metabolic functions to maintain whole-body homeostasis. Although serves as a powerful model for studying human metabolic diseases, a lack of tissue-specific metabolic models makes it challenging to quantitatively assess the metabolic processes of individual tissues and disease models in this organism. To address this issue, we reconstructed 32 tissue-specific genome-scale metabolic models (GEMs) using pseudo-bulk single cell transcriptomics data, revealing distinct metabolic network structures across tissues.

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) is associated with a range of B-cell malignancies, including Burkitt, Hodgkin, post-transplant, and AIDS-related lymphomas. Studies highlight EBV's transformative capability to induce oncometabolism in B-cells to support energy, biosynthetic precursors, and redox equivalents necessary for transition from quiescent to proliferation. Mitochondrial dysfunction presents an intrinsic barrier to EBV B-cell immortalization.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The primary causes of COPD are environmental, including cigarette smoking; however, genetic susceptibility also contributes to COPD risk. Genome-Wide Association Studies (GWASes) have revealed more than 80 genetic loci associated with COPD, leading to the identification of multiple COPD GWAS genes.

View Article and Find Full Text PDF
Article Synopsis
  • Pyrimidines, particularly uridine 5'-triphosphate (UTP), play a crucial role in cellular metabolism by supporting pyruvate oxidation and the TCA cycle, unlike purines which are more well-studied.
  • Depletion of cellular pyrimidines reduces the synthesis of thiamine pyrophosphate (TPP), essential for pyruvate dehydrogenase (PDH) activity, which is necessary for metabolic processes.
  • UTP acts as a preferred substrate for TPK1, facilitating TPP synthesis, which is vital for maintaining metabolic functions such as lipogenesis and adipocyte differentiation.
View Article and Find Full Text PDF

Anti-vascular endothelial growth factor therapy has had a substantial impact on the treatment of choroidal neovascularization (CNV) in patients with neovascular age-related macular degeneration (nAMD), the leading cause of vision loss in older adults. Despite treatment, many patients with nAMD still develop severe and irreversible visual impairment because of the development of subretinal fibrosis. We recently reported the anti-inflammatory and antiangiogenic effects of inhibiting the gene encoding adenosine receptor 2A (), which has been implicated in cardiovascular disease.

View Article and Find Full Text PDF

Increased de novo lipogenesis (DNL) in white adipose tissue is associated with insulin sensitivity. Under both Normal-Chow-Diet and High-Fat-Diet, mice expressing a kinase inactive Cyclin-dependent kinase 6 (Cdk6) allele (K43M) display an increase in DNL in visceral white adipose tissues (VAT) as compared to wild type mice (WT), accompanied by markedly increased lipogenic transcriptional factor Carbohydrate-responsive element-binding proteins (CHREBP) and lipogenic enzymes in VAT but not in the liver. Treatment of WT mice under HFD with a CDK6 inhibitor recapitulates the phenotypes observed in K43M mice.

View Article and Find Full Text PDF

Degradation of unliganded androgen receptor (AR) in prostate cancer cells can be prevented by proteasome inhibition, but this is associated with only modest increases in polyubiquitylated AR. An inhibitor (VLX1570) of the deubiquitylases associated with the proteasome did not increase ubiquitylation of unliganded AR, indicating that AR is not targeted by these deubiquitylases. We then identified a series of AR ubiquitylation sites, including a not previously identified site at K911, as well as methylation sites and previously identified phosphorylation sites.

View Article and Find Full Text PDF

Excessive renal fibrosis is a common pathology in progressive chronic kidney diseases. Inflammatory injury and aberrant repair processes contribute to the development of kidney fibrosis. Myeloid cells, particularly monocytes/macrophages, play a crucial role in kidney fibrosis by releasing their proinflammatory cytokines and extracellular matrix components such as collagen and fibronectin into the microenvironment of the injured kidney.

View Article and Find Full Text PDF

Methionine is an essential branch of diverse nutrient inputs that dictate mTORC1 activation. In the absence of methionine, SAMTOR binds to GATOR1 and inhibits mTORC1 signaling. However, how mTORC1 is activated upon methionine stimulation remains largely elusive.

View Article and Find Full Text PDF

We present a comprehensive multi-omic analysis of the EPISTOP prospective clinical trial of early intervention with vigabatrin for pre-symptomatic epilepsy treatment in Tuberous Sclerosis Complex (TSC), in which 93 infants with TSC were followed from birth to age 2 years, seeking biomarkers of epilepsy development. Vigabatrin had profound effects on many metabolites, increasing serum deoxycytidine monophosphate (dCMP) levels 52-fold. Most serum proteins and metabolites, and blood RNA species showed significant change with age.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni25nk5bhd8l37vvle4u45gq4o9l3p87c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once