Traumatic brain injury (TBI) represents a critical health problem of which diagnosis, management, and treatment remain challenging. TBI is a contributing factor in approximately one-third of all injury-related deaths in the United States. The Centers for Disease Control and Prevention estimate that 1.
View Article and Find Full Text PDFA major consequence of traumatic brain injury (TBI) is the rapid proteolytic degradation of structural cytoskeletal proteins. This process is largely reflected by the interruption of axonal transport as a result of extensive axonal injury leading to neuronal cell injury. Previous work from our group has described the extensive degradation of the axonally enriched cytoskeletal αII-spectrin protein which results in molecular signature breakdown products (BDPs) indicative of injury mechanisms and to specific protease activation both in vitro and in vivo.
View Article and Find Full Text PDFIntracerebral hemorrhage (ICH) is a devastating form of stroke leading to a high rate of death and disability worldwide. Although it has been hypothesized that much of the IHC insult occurs in the subacute period mediated via a series of complex pathophysiological cascades, the molecular mechanisms involved in ICH have not been systematically characterized. Among the best approaches to understand the underlying mechanisms of injury and recovery, protein dynamics assessment via proteomics/systems biology platforms represent one of the cardinal techniques optimized for mechanisms investigation and biomarker identification.
View Article and Find Full Text PDFInt J Bioinform Res Appl
September 2014
Mass spectrometry (MS) has become the method of choice to study the proteome of brain injury. The high throughput nature of MS-based proteomic experiments generates massive amount of mass spectral data presenting great challenges in downstream interpretation. Currently, different bioinformatics platforms are available for functional analysis and data mining of MS-generated proteomic data.
View Article and Find Full Text PDFThe post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems.
View Article and Find Full Text PDFAmong the U.S. military personnel, blast injury is among the leading causes of brain injury.
View Article and Find Full Text PDFThe two primary categories of stroke, ischemic and hemorrhagic, both have fundamentally different mechanisms and thus different treatment options. These two stroke categories were applied to rat models to identify potential biomarkers that can distinguish between them. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) without reperfusion while hemorrhagic stroke was induced by injecting collagenase IV into the striatum.
View Article and Find Full Text PDFMS-based proteomics has been the method of choice for biomarker discovery in the field of traumatic brain injury (TBI). Due to its high sensitivity and specificity, MS is now being explored for biomarker quantitative validation in tissue and biofluids. In this study, we demonstrate the use of MS in both qualitative protein identification and targeted detection of acute TBI biomarkers released from degenerating cultured rat cortical mixed neuronal cells, mimicking intracellular fluid in the central nervous system after TBI.
View Article and Find Full Text PDFProtein tyrosine nitration is a post-translational modification commonly used as a marker of cellular oxidative stress associated with numerous pathophysiological conditions. We focused on ubiquitin carboxyl terminal hydrolase-L1 (UCH-L1) and glyceraldehyde-3-phosphate (GAPDH) which are high-abundant brain proteins that have been identified to be highly susceptible to oxidative modification. Both UCH-L1 and GAPDH have been linked to the pathogenesis of Alzheimer's and Parkinson's disease, however specific nitration sites have not been elucidated.
View Article and Find Full Text PDFObject: This study investigates a potential novel application of a selective cathepsin B and L inhibitor in experimental intracerebral hemorrhage (ICH) in rats.
Methods: Forty adult male Wistar rats received an ICH by stereotactic injection of 100 μl of autologous blood or sham via needle insertion into the right striatum. The rats were treated with a selective cathepsin B and L inhibitor (CP-1) or 1% dimethyl sulfoxide sterile saline intravenously at 2 and 4 hours after injury.
Background: Anti-angiogenic treatments of malignant tumors targeting vascular endothelial growth factor receptors (VEGFR) tyrosine kinase are being used in different early stages of clinical trials. Very recently, VEGFR tyrosine kinase inhibitor (Vetanalib, PTK787) was used in glioma patient in conjunction with chemotherapy and radiotherapy. However, changes in the tumor size, tumor vascular permeability, vascular density, expression of VEGFR2 and other angiogenic factors in response to PTK787 are not well documented.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2009
Calpastatin, a naturally occurring protein, is the only inhibitor that is specific for calpain. A novel blood-brain barrier (BBB)-permeant calpastatin-based calpain inhibitor, named B27-HYD, was developed and used to assess calpain's contribution to neurological dysfunction after stroke in rats. Postischemic administration of B27-HYD reduced infarct volume and neurological deficits by 35% and 44%, respectively, compared to untreated animals.
View Article and Find Full Text PDFIn order to explore early events during the association of plasminogen activator inhibitor-1 (PAI-1) with its cofactor vitronectin, we have applied a robust strategy that combines protein engineering, fluorescence spectroscopy, and rapid reaction kinetics. Fluorescence stopped-flow experiments designed to monitor the rapid association of PAI-1 with vitronectin indicate a fast, concentration-dependent, biphasic binding of PAI-1 to native vitronectin but only a monophasic association with the somatomedin B (SMB) domain, suggesting that multiple phases of the binding interaction occur only when full-length vitronectin is present. Nonetheless, in all cases, the initial fast interaction is followed by slower fluorescence changes attributed to a conformational change in PAI-1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2008
The effects of selective inhibition of cathepsins B and L on postischemic protein alterations in the brain were investigated in a rat model of middle cerebral artery occlusion (MCAO). Cathepsin B activity increased predominantly in the subcortical region of the ischemic hemisphere where the levels of collapsing mediator response protein 2, heat shock cognate 70 kDa protein, 60 kDa heat shock protein, protein disulfide isomerase A3 and albumin, were found to be significantly elevated. Postischemic treatment with Cbz-Phe-Ser(OBzl)-CHN(2), cysteine protease inhibitor 1 (CP-1), reduced infarct volume, neurological deficits and cathepsin B activity as well as the amount of heat shock proteins and albumin found in the brain.
View Article and Find Full Text PDFIt is well documented that tumor suppressive maspin inhibits tumor cell invasion and extracellular matrix remodeling. Maspin is a cytosolic, cell surface-associated, and secreted protein in the serine protease inhibitor superfamily. Although several molecules have been identified as candidate intracellular maspin targets, the extracellular maspin target(s) remains elusive.
View Article and Find Full Text PDFThe serpin plasminogen activator inhibitor-1 (PAI-1) is a potential therapeutic target in cardiovascular and cancerous diseases. PAI-1 circulates in blood as a complex with vitronectin. A PAI-1 variant (N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 PAI-1) with a fluorescent tag at the reactive center loop (RCL) was used to study the effects of vitronectin and monoclonal antibodies (mAbs) directed against alpha-helix F (Mab-2 and MA-55F4C12) on the reactions of PAI-1 with tissue-type and urokinase-type plasminogen activators.
View Article and Find Full Text PDFUncontrolled activation of calpain has been linked to tissue damage after neuronal and cardiac ischemias, traumatic spine and brain injuries, and multiple sclerosis and Alzheimer's disease. In vivo, the activity of calpain is regulated by its endogenous inhibitor calpastatin. The pathological role of calpain has been attributed to an imbalance between the activities of the protease and its inhibitor.
View Article and Find Full Text PDFThis study was performed to determine the role of intracellular calcium concentration and calpain activity on the cellular events that occur in rat sinusoidal endothelial cells (SEC) in the cold. Intracellular calcium concentrations were measured in isolated cold preserved rat SEC. Dantrolene or 1,2-bis(o-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM) was added in some studies.
View Article and Find Full Text PDFCalpastatin is the natural specific inhibitor of calpain. Recent research has linked uncontrolled calpain activation to tissue damage after neuronal and cardiac ischemias, traumatic spine and brain injuries, as well as Alzheimer's disease and cataract formation. An imbalance between the activities of calpain and calpastatin is believed to be responsible for the pathological role of calpain.
View Article and Find Full Text PDF