The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways.
View Article and Find Full Text PDFIn this work, we report a two-step methodology for the synthesis of small silver nanoparticles embedded into hydrogels based on chitosan (CS) and hydroxypropyl methylcellulose (HPMC) biopolymers. This method uses -glucose as an external green reducing agent and purified water as a solvent, leading to an eco-friendly, cost-effective, and biocompatible process for the synthesis of silver nanocomposite hydrogels. Their characterization comprises ultraviolet-visible spectroscopy, Fourier-transform infrared spectra, differential scanning calorimetry, scanning electron microscopy with energy-dispersive spectroscopy, and transmission electron microscopy assays.
View Article and Find Full Text PDFMitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV-1, an -carbonyl quinone, which inhibits NADH:duroquinone activity in D-active conformation and reduces the 3ADP state respiration dependent on Complex I, causing mitochondrial depolarization, ATP drop, increased superoxide levels, and metabolic remodeling towards glycolysis in BC cells.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution.
View Article and Find Full Text PDFThis study proposes the use of polymeric nanoparticles (NPs) as collectors for copper sulfide flotation. The experimental phase included the preparation of two types of polystyrene-based NPs: St-CTAB and St-CTAB-VI. These NPs were characterized by Fourier-Transform Infrared (FTIR) spectroscopy and dynamic light scattering (DLS).
View Article and Find Full Text PDFThe electrochemical behavior of N-methyl- and N-benzyl-4-piperidone curcumin analogs were studied experimentally and theoretically. The studied compounds present different substituents at the position in the phenyl rings (-H, -Br, -Cl, -CF, and -OCH). We assessed their electrochemical behavior by differential pulse and cyclic voltammetry, while we employed density functional theory (DFT) M06 and M06-2x functionals along with 6-311+G(d,p) basis set calculations to study them theoretically.
View Article and Find Full Text PDFIn this study, surficial interactions of glutaraldehyde (GA) as an important crosslinker agent with the β-glucosidase (BGL) enzyme surface were investigated by theoretical methods. Since the inherent constraints of experimental methods limit their application to find the molecular perspective of these significant interactions in enzyme immobilization, theoretical methods were used as a complementary tool to understand this concept. The Minnesota density functional calculations showed that the chair conformations of the oxane-2,6-diol form of the GA were more stable than its free aldehyde form.
View Article and Find Full Text PDFMalnutrition has emerged as one of the major health problems worldwide. Traditional yellow maize has low provitamin-A (proA) content and its genetic base in proA biofortification breeding program of subtropics is extremely narrow. To diversify the proA rich germplasm, 10 elite low proA inbreds were crossed with a proA rich donor (HP702-22) having mutant crtRB1 gene.
View Article and Find Full Text PDFCurrently, special emphasis is being given to the design and fabrication of antibacterial nanocomposite hydrogels for wound dressing applications. Herein, we report the synthesis and characterization of hydroxypropyl methylcellulose (HPMC) reinforced with HPMC capped copper nanoparticles (HCu NPs) based nanocomposite hydrogel films (NHFs). Spherical nanostructures of HCu NPs (∼40 nm) were achieved by facile precipitation technique using ascorbic acid as a nucleating agent and subsequently made their NHFs via solution casting method.
View Article and Find Full Text PDFThis work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers.
View Article and Find Full Text PDFCopper nanoparticles were synthesized via precipitation technique using the pseudonatural cationic chitosan biopolymer as a stabilizing agent. The nanoparticles developed were successfully incorporated into the 1:1 ratio of blended chitosan: pluronic F127 polymer solution and made their nanocomposite hydrogels by solution casting method. The formed copper-based nanocomposite hydrogels were characterized by using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy and transmission electron microscopy studies.
View Article and Find Full Text PDFChitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu ions using sodium hydroxide and ascorbic acid.
View Article and Find Full Text PDFIn this report, we investigated the swelling behavior and antibacterial property of nanosilver composite hydrogels made from tea with polyacrylamide via a free-radical polymerization and green process technique. This is probably for the first time; tea-based nano silver composite hydrogels were developed. The composite hydrogels comprise embedded nano silver particles in the tea hydrogel matrix via a green process with mint leaf extract.
View Article and Find Full Text PDFVolatile phenols, such as 4-ethyphenol (4-EP) and 4-ethylguaiacol (4-EG), are responsible for the "Brett character" found in wines contaminated with Brettanomyces yeast (i.e., barnyard, animal, spicy and smoky aromas).
View Article and Find Full Text PDF4-ethylguaiacol (4-EG) is one of the important compounds responsible for the "Brett character" (i.e. spicy and smoky aromas) found in wines contaminated with Brettanomyces yeast.
View Article and Find Full Text PDFThe search for new nano-systems for targeted biomedical applications and controlled drug release has attracted significant attention in polymer chemistry, pharmaceutics, and biomaterial science. Controlled drug delivery has many advantages over conventional drug administration, such as reduction of side effects, maintaining a stable plasma level concentration and improving the quality of life of patients. In this study, PAMAM G5 dendrimers and PAMAM G5-folic acid conjugates (PAMAM G5-FA) are synthesized and characterized by mass spectrometry (MALDI-MS).
View Article and Find Full Text PDFPlatelets are anucleated blood cells that play an important role both in the pathogenesis of atherosclerosis and subsequent thrombosis. Dendrimers have attracted great interest in biomedical applications. However, their interactions with cell compounds and compartments are nonselective, thus causing cytotoxicity and hemotoxicity.
View Article and Find Full Text PDFAlkaloids are interesting groups of natural products with important biological properties, but naturally available alkaloids are insufficient for biological studies. Therefore, the demand for higher amounts of alkaloids made research community to synthesize alkaloids by innovative techniques. The importance of asymmetric reactions for scientific community to obtain enantiomerically pure compounds with good yield and diastereomeric excess (de) or enantiomeric excess (ee) by different strategies of asymmetric induction is emphasized in this review.
View Article and Find Full Text PDF