Publications by authors named "John Alroy"

Latitudinal diversity gradients are among the most striking patterns in nature. Despite a large body of work investigating both geographic and environmental drivers, biogeographical provinces have not been included in statistical models of diversity patterns. Instead, spatial studies tend to focus on species-area and local-regional relationships.

View Article and Find Full Text PDF

Conservation scientists are increasingly interested in the question of how extinction prunes the tree of life. This question is particularly important for Australian freshwater fishes because there is a broad mix of ∼300 old and young species, many of which are severely threatened. We used a complete species-level phylogeny of Australian freshwater fishes to examine phylogenetic nonrandomness of extinction risk.

View Article and Find Full Text PDF

Background: The orogeny of the eastern Mediterranean region has substantially affected ecological speciation patterns, particularly of mountain-dwelling species. Mountain vipers of the genus Montivipera are among the paramount examples of Mediterranean neo-endemism, with restricted ranges in the mountains of Anatolia, the Levant, Caucasus, Alborz, and Zagros. Here we explore the phylogenetic and ecological diversification of Montivipera to reconstruct its ecological niche evolution and biogeographic history.

View Article and Find Full Text PDF

There is no consensus about how terrestrial biodiversity was assembled through deep time, and in particular whether it has risen exponentially over the Phanerozoic. Using a database of 60 859 fossil occurrences, we show that the spatial extent of the worldwide terrestrial tetrapod fossil record itself expands exponentially through the Phanerozoic. Changes in spatial sampling explain up to 67% of the change in known fossil species counts, and these changes are decoupled from variation in habitable land area that existed through time.

View Article and Find Full Text PDF

Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms.

View Article and Find Full Text PDF

Large mammals are at high risk of extinction globally. To understand the consequences of their demise for community assembly, we tracked community structure through the end-Pleistocene megafaunal extinction in North America. We decomposed the effects of biotic and abiotic factors by analyzing co-occurrence within the mutual ranges of species pairs.

View Article and Find Full Text PDF

The fossil record provides one of the strongest tests of the hypothesis that diversity within local communities is constrained over geological timescales. Constraints to diversity are particularly controversial in modern terrestrial ecosystems, yet long-term patterns are poorly understood. Here we document patterns of local richness in Phanerozoic terrestrial tetrapods using a global data set comprising 145,332 taxon occurrences from 27,531 collections.

View Article and Find Full Text PDF

Integrons are genetic elements that promote rapid adaptation in bacteria by capturing exogenous, mobile gene cassettes. Recently, a subset of gene cassettes has facilitated the global spread of antibiotic resistance. However, outside clinical settings, very little is known about their diversity and spatial ecology.

View Article and Find Full Text PDF

Are communities limited by biotic interactions, or are they random draws from regional species pools? One way to tell is to compare total species counts in geographic regions to average counts in ecological samples falling within those regions. If species richness is limited regionally, then the relationship should be curvilinear even in a log-log space. Global sets of samples including trees and 10 groups of animals are analysed to test this hypothesis.

View Article and Find Full Text PDF

It is widely expected that habitat destruction in the tropics will cause a mass extinction in coming years, but the potential magnitude of the loss is unclear. Existing literature has focused on estimating global extinction rates indirectly or on quantifying effects only at local and regional scales. This paper directly predicts global losses in 11 groups of organisms that would ensue from disturbance of all remaining tropical forest habitats.

View Article and Find Full Text PDF

Extinction is a key feature of the evolutionary history of life, and assessments of extinction risk are essential for the effective protection of biodiversity. The goal in assembling this special issue of Biology Letters was to highlight problems and questions at the research frontier of extinction biology, with an emphasis on recent developments in the methodology of inferring the patterns and processes of extinction from a background of often noisy and sparse data. In selecting topics, we sought to illustrate how extinction is not simply a self-evident phenomenon, but the subject of a dynamic and quantitatively rigorous field of natural science, with practical applications to conservation.

View Article and Find Full Text PDF

The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013.

View Article and Find Full Text PDF

Late Quaternary megafauna extinctions impoverished mammalian diversity worldwide. The causes of these extinctions in Australia are most controversial but essential to resolve, because this continent-wide event presaged similar losses that occurred thousands of years later on other continents. Here we apply a rigorous metadata analysis and new ensemble-hindcasting approach to 659 Australian megafauna fossil ages.

View Article and Find Full Text PDF

How did evolution generate the extraordinary diversity of vertebrates on land? Zero species are known prior to ~380 million years ago, and more than 30,000 are present today. An expansionist model suggests this was achieved by large and unbounded increases, leading to substantially greater diversity in the present than at any time in the geological past. This model contrasts starkly with empirical support for constrained diversification in marine animals, suggesting different macroevolutionary processes on land and in the sea.

View Article and Find Full Text PDF
Article Synopsis
  • Ecologists generally find that a few species dominate in various communities, leading to a flat distribution of species abundances.
  • Previous research has mainly looked at a limited number of theoretical or empirical distributions, missing a broader analysis of data from diverse species.
  • The study introduces a new "double geometric" distribution model that better fits the observed data from 1055 samples and suggests that species compete unequally for resources in a multidimensional niche landscape, allowing for coexistence despite strong interactions.
View Article and Find Full Text PDF

There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys.

View Article and Find Full Text PDF

Pairwise similarity coefficients are downward biased when samples only record presences and sampling is partial. A simple but forgotten index proposed by Stephen Forbes in 1907 can help solve this problem. His original equation requires knowing the number of species absent in both samples that could have been present.

View Article and Find Full Text PDF

Captive breeding of mammals in zoos is the last hope for many of the best-known endangered species and has succeeded in saving some from certain extinction. However, the number of managed species selected is relatively small and focused on large-bodied, charismatic mammals that are not necessarily under strong threat and not always good candidates for reintroduction into the wild. Two interrelated and more fundamental questions go unanswered: have the major breeding programs succeeded at the basic level of maintaining and expanding populations, and is there room to expand them? I used published counts of births and deaths from 1970 to 2011 to quantify rates of growth of 118 captive-bred mammalian populations.

View Article and Find Full Text PDF

Understanding the feeding behaviour of the species that make up any ecosystem is essential for designing further research. Mammals have been studied intensively, but the criteria used for classifying their diets are far from being standardized. We built a database summarizing the dietary preferences of terrestrial mammals using published data regarding their stomach contents.

View Article and Find Full Text PDF

The discipline-wide effort to database the fossil record at the occurrence level has made it possible to estimate marine invertebrate extinction and origination rates with much greater accuracy. The new data show that two biotic mechanisms have hastened recoveries from mass extinctions and confined diversity to a relatively narrow range over the past 500 million years (Myr). First, a drop in diversity of any size correlates with low extinction rates immediately afterward, so much so that extinction would almost come to a halt if diversity dropped by 90%.

View Article and Find Full Text PDF

It has previously been thought that there was a steep Cretaceous and Cenozoic radiation of marine invertebrates. This pattern can be replicated with a new data set of fossil occurrences representing 3.5 million specimens, but only when older analytical protocols are used.

View Article and Find Full Text PDF

Ecological interactions, such as predation and bioturbation, are thought to be fundamental determinants of macroevolutionary trends. A data set containing global occurrences of Phanerozoic fossils of benthic marine invertebrates shows escalatory trends in the relative frequency of ecological groups, such as carnivores and noncarnivorous infaunal or mobile organisms. Associations between these trends are either statistically insignificant or interpretable as preservational effects.

View Article and Find Full Text PDF