Actin barbed end-binding macrolides have been shown to inhibit cancer cell motility and invasion of extracellular matrix (ECM), evoking their potential utility as therapies for metastatic cancers. Unfortunately, the direct use of these compounds in clinical settings is impeded by their limited natural abundance, challenging total synthesis, and detrimental effects on normal tissues. To develop potent analogues of these compounds that are simpler to synthesize and compatible with cell-specific targeting systems, such as antibodies, we designed over 20 analogues of the acyclic side chain (tail) of the macrolide Mycalolide B.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2024
Introduction: The fungal G protein-coupled receptors Ste2 and Ste3 are vital in mediating directional hyphal growth of the agricultural pathogen towards wheat plants. This chemotropism is induced by a catalytic product of peroxidases secreted by the wheat. Currently, the identity of this product, and the substrate it is generated from, are not known.
View Article and Find Full Text PDFKinesin motor proteins couple mechanical movements in their motor domain to the binding and hydrolysis of ATP in their nucleotide-binding pocket. Forces produced through this 'mechanochemical' coupling are typically used to mobilize kinesin-mediated transport of cargos along microtubules or microtubule cytoskeleton remodeling. This review discusses the recent high-resolution structures (<4 Å) of kinesins bound to microtubules or tubulin complexes that have resolved outstanding questions about the basis of mechanochemical coupling, and how family-specific modifications of the motor domain can enable its use for motility and/or microtubule depolymerization.
View Article and Find Full Text PDFFungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Previous studies on Fusarium species have highlighted the involvement of the Ste2 G-protein-coupled receptor (GPCR) in mediating polarized hyphal growth toward host-released peroxidase. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to Fusarium graminearum chemotropism and pathogenicity.
View Article and Find Full Text PDFKinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures (2.6-3.
View Article and Find Full Text PDFCancer metastasis is a complex process involving highly motile tumor cells that breach tissue barriers, enter the bloodstream and lymphatic system, and disseminate throughout the body as circulating tumor cells. The primary cellular mechanism contributing to these critical events is the reorganization of the actin cytoskeleton. Mycalolide B (MycB) is an actin-targeting marine macrolide that can suppress proliferation, migration, and invasion of breast and ovarian cancer cells at low nanomolar doses.
View Article and Find Full Text PDFFusarium Head Blight of wheat, caused by the filamentous fungus Fusarium graminearum, leads to devastating global food shortages and economic losses. While many studies have addressed the responses of both wheat and F. graminearum during their interaction, the possibility of fungal chemotropic sensing enabling pathogenicity remains unexplored.
View Article and Find Full Text PDFKinesins are a diverse group of adenosine triphosphate (ATP)-dependent motor proteins that transport cargos along microtubules (MTs) and change the organization of MT networks. Shared among all kinesins is a ~40 kDa motor domain that has evolved an impressive assortment of motility and MT remodeling mechanisms as a result of subtle tweaks and edits within its sequence. Several elegant studies of different kinesin isoforms have exposed the purpose of structural changes in the motor domain as it engages and leaves the MT.
View Article and Find Full Text PDFMitotic spindles assume a bipolar architecture through the concerted actions of microtubules, motors, and cross-linking proteins. In most eukaryotes, kinesin-5 motors are essential to this process, and cells will fail to form a bipolar spindle without kinesin-5 activity. Remarkably, inactivation of kinesin-14 motors can rescue this kinesin-5 deficiency by reestablishing the balance of antagonistic forces needed to drive spindle pole separation and spindle assembly.
View Article and Find Full Text PDFWith better tools for data processing and with synchrotron beamlines that are capable of collecting data at longer wavelengths, sulfur-based native single-wavelength anomalous dispersion (SAD) phasing has become the `first-choice' method for de novo protein structure determination. However, for many proteins native SAD phasing can be simplified by taking advantage of their interactions with natural metal cofactors that are stronger anomalous scatterers than sulfur. This is demonstrated here for four unique domains of a 1.
View Article and Find Full Text PDFAmplification of HER2 leads to development of HER2-positive (HER2+) cancers with high rates of metastasis compared to other cancer subtypes. The goal of this study was to probe the vulnerability of HER2+ cancer cells to a filamentous actin (F-actin) severing and capping toxin. The growth and viability of human HER2+ breast cancer (HCC1954) and ovarian cancer (SKOV3) cell lines were significantly impaired upon treatment with the marine macrolide mycalolide B (Myc B) at doses above 100 nanomolar.
View Article and Find Full Text PDFMutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions.
View Article and Find Full Text PDFBackground: Stilbene cleaving oxygenases (SCOs), also known as lignostilbene-α,β-dioxygenases (LSDs) mediate the oxidative cleavage of the olefinic double bonds of lignin-derived intermediate phenolic stilbenes, yielding small modified benzaldehyde compounds. SCOs represent one branch of the larger carotenoid cleavage oxygenases family. Here, we describe the structural and functional characterization of an SCO-like enzyme from the soil-born, bio-control agent Pseudomonas brassicacearum.
View Article and Find Full Text PDFKinesin-13 proteins are major microtubule (MT) regulatory factors that catalyze removal of tubulin subunits from MT ends. The class-specific "neck" and loop 2 regions of these motors are required for MT depolymerization, but their contributing roles are still unresolved because their interactions with MT ends have not been observed directly. Here we report the crystal structure of a catalytically active kinesin-13 monomer (Kif2A) in complex with two bent αβ-tubulin heterodimers in a head-to-tail array, providing a view of these interactions.
View Article and Find Full Text PDFBacterial adhesins are modular cell-surface proteins that mediate adherence to other cells, surfaces, and ligands. The Antarctic bacterium uses a 1.5-MDa adhesin comprising over 130 domains to position it on ice at the top of the water column for better access to oxygen and nutrients.
View Article and Find Full Text PDFAntifreeze proteins (AFPs) are a class of ice-binding proteins that promote survival of a variety of cold-adapted organisms by decreasing the freezing temperature of bodily fluids. A growing number of biomedical, agricultural, and commercial products, such as organs, foods, and industrial fluids, have benefited from the ability of AFPs to control ice crystal growth and prevent ice recrystallization at subzero temperatures. One limitation of AFP use in these latter contexts is their tendency to denature and irreversibly lose activity at the elevated temperatures of certain industrial processing or large-scale AFP production.
View Article and Find Full Text PDFClostridium perfringens is a commensal member of the human gut microbiome and an opportunistic pathogen whose genome encodes a suite of putative large, multi-modular carbohydrate-active enzymes that appears to play a role in the interaction of the bacterium with mucin-based carbohydrates. Among the most complex of these is an enzyme that contains a presumed catalytic module belonging to glycoside hydrolase family 31 (GH31). This large enzyme, which based on its possession of a GH31 module is a predicted α-glucosidase, contains a variety of non-catalytic ancillary modules, including three CBM32 modules that to date have not been characterized.
View Article and Find Full Text PDFGlucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu.
View Article and Find Full Text PDFCandida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins.
View Article and Find Full Text PDFThe mitotic kinesin motor protein KIF14 is essential for cytokinesis during cell division and has been implicated in cerebral development and a variety of human cancers. Here we show that the mouse KIF14 motor domain binds tightly to microtubules and does not display typical nucleotide-dependent changes in this affinity. It also has robust ATPase activity but very slow motility.
View Article and Find Full Text PDFCalpains are Ca(2+) dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca(2+) signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy.
View Article and Find Full Text PDFWhen polypeptide chains fold into a protein, hydrophobic groups are compacted in the center with exclusion of water. We report the crystal structure of an alanine-rich antifreeze protein that retains ~400 waters in its core. The putative ice-binding residues of this dimeric, four-helix bundle protein point inwards and coordinate the interior waters into two intersecting polypentagonal networks.
View Article and Find Full Text PDFForce production by kinesins has been linked to structural rearrangements of the N and C termini of their motor domain upon nucleotide binding. In recent crystal structures, the Kar3-associated protein Vik1 shows unexpected homology to these conformational states even though it lacks a nucleotide-binding site. This conservation infers a degree of commonality in the function of the N- and C-terminal regions during the mechanochemical cycle of all kinesins and kinesin-related proteins.
View Article and Find Full Text PDF