Publications by authors named "John Aldo Lee"

Purpose: Planning target volume (PTV) definition based on Mid-Position (Mid-P) strategy typically integrates breathing motion from tumor positions variances along the conventional axes of the DICOM coordinate system. Tumor motion directionality is thus neglected even though it is one of its stable characteristics in time. We therefore propose the directional MidP approach (MidP dir), which allows motion directionality to be incorporated into PTV margins.

View Article and Find Full Text PDF

The 'clinical target distribution' (CTD) has recently been introduced as a promising alternative to the binary clinical target volume (CTV). However, a comprehensive study that considers the CTD, together with geometric treatment uncertainties, was lacking. Because the CTD is inherently a probabilistic concept, this study proposes a fully probabilistic approach that integrates the CTD directly in a robust treatment planning framework.

View Article and Find Full Text PDF

Dimension reduction (DR) computes faithful low-dimensional (LD) representations of high-dimensional (HD) data. Outstanding performances are achieved by recent neighbor embedding (NE) algorithms such as t -SNE, which mitigate the curse of dimensionality. The single-scale or multiscale nature of NE schemes drives the HD neighborhood preservation in the LD space (LDS).

View Article and Find Full Text PDF

Kilovoltage intrafraction monitoring (KIM) is a method allowing to precisely infer the tumour trajectory based on cone beam computed tomography (CBCT) 2D-projections. However, its accuracy is deteriorated in the case of highly mobile tumours involving hysteresis. A first adaptation of KIM consisting of a prior amplitude based binning step has been developed in order to minimize the errors of the original model (phase-KIM).

View Article and Find Full Text PDF

Background And Purpose: Current motion mitigation strategies, like margins, gating, and tracking, deal with geometrical uncertainties in the tumour position, induced by breathing during radiotherapy (RT). However, they often overlook motion variability in amplitude, respiratory rate, or baseline position, when breathing spontaneously. Consequently, this may negatively affect the delivered dose conformality in comparison to the plan.

View Article and Find Full Text PDF

Purpose: Robust optimization is becoming the gold standard for generating robust plans against various kinds of treatment uncertainties. Today, most robust optimization strategies use a pragmatic set of treatment scenarios (the so-called uncertainty set) consisting of combinations of maximum errors, of each considered uncertainty source (such as tumor motion, setup and image-conversion errors). This approach presents two key issues.

View Article and Find Full Text PDF

Dimensionality reduction (DR) aims at faithfully and meaningfully representing high-dimensional (HD) data into a low-dimensional (LD) space. Recently developed neighbor embedding DR methods lead to outstanding performances, thanks to their ability to foil the curse of dimensionality. Unfortunately, they cannot be directly employed on incomplete data sets, which become ubiquitous in machine learning.

View Article and Find Full Text PDF

With the routine use of intensity modulated radiation therapy for the treatment of head-and-neck squamous cell carcinoma allowing highly conformed dose distribution, there is an increasing need for refining both the selection and the delineation of gross tumor volumes (GTV). In this framework, molecular imaging with positron emission tomography and magnetic resonance imaging offers the opportunity to improve diagnostic accuracy and to integrate tumor biology mainly related to the assessment of tumor cell density, tumor hypoxia, and tumor proliferation into the treatment planning equation. Such integration, however, requires a deep comprehension of the technical and methodological issues related to image acquisition, reconstruction, and segmentation.

View Article and Find Full Text PDF

Purpose: Analytical algorithms have a limited accuracy when modeling very heterogeneous tumor sites. This work addresses the performance of a hybrid dose optimizer that combines both Monte Carlo (MC) and pencil beam (PB) dose engines to get the best trade-off between speed and accuracy for proton therapy plans.

Methods: The hybrid algorithm calculates the optimal spot weights (w) by means of an iterative optimization process where the dose at each iteration is computed by using a precomputed dose influence matrix based on the conventional PB plus a correction term c obtained from a MC simulation.

View Article and Find Full Text PDF

Aim: The aim of the study was to assess the feasibility of an individualized 18F fluorodeoxyglucose positron emission tomography (FDG-PET)-guided dose escalation boost in non-small cell lung cancer (NSCLC) patients and to assess its impact on local tumor control and toxicity.

Patients And Methods: A total of 13 patients with stage II-III NSCLC were enrolled to receive a dose of 62.5 Gy in 25 fractions to the CT-based planning target volume (PTV; primary turmor and affected lymph nodes).

View Article and Find Full Text PDF

Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (k ). Pencil beam scanning (PBS) systems cannot approximate reference conditions using a single spot. However, dose distributions requested in TRS-398 can be reproduced with PBS using a combination of spots.

View Article and Find Full Text PDF

Purpose: Validation of dose escalation through FDG-PET dose painting (DP) for oropharyngeal squamous cell carcinoma (SCC) requires randomized clinical trials with large sample size, potentially involving different treatment planning and delivery systems. As a first step of a joint clinical study of DP, a planning comparison was performed between Tomotherapy HiArt® (HT) and Varian RapidArc® (RA).

Methods: The planning study was conducted on five patients with oropharyngeal SCC.

View Article and Find Full Text PDF

Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures.

View Article and Find Full Text PDF

Objective: To develop a methodology for using FDG PET/CT in adaptive dose painting by numbers (DPBN) in head and neck squamous cell carcinoma (HNSCC) patients. Issues related to noise in PET and treatment robustness against geometric errors are addressed.

Methods: Five patients with locally advanced HNSCC scheduled for chemo-radiotherapy were imaged with FDG-PET/CT at baseline and 2-3 times during radiotherapy (RT).

View Article and Find Full Text PDF

Purpose: To compare the mid-position (MidP) strategy to the conventional internal target volume (ITV) for lung tumor management in helical TomoTherapy, using 4D Monte Carlo (MC) plan simulations.

Materials And Methods: For NSCLC patients treated by SBRT (n = 8) or SIB-IMRT (n = 7), target volumes and OARs were delineated on a contrast-enhanced CT, while 4D-CT was used to generate either ITV or MidP volumes with deformable registrations. PTV margins were added.

View Article and Find Full Text PDF

Intensity-modulated radiation therapy (IMRT) is a conformal irradiation technique that enables steep dose gradients. In head and neck tumours this approach spares parotid-gland function without compromise to treatment efficacy. Anatomical and molecular imaging modalities may be used to tailor treatment by enabling proper selection and delineation of target volumes and organs at risk, which in turn lead to dose prescriptions that take into account the underlying tumour biology (eg, human papillomavirus status).

View Article and Find Full Text PDF

Background And Purpose: The planning process in radiotherapy (RT) typically involves the acquisition of a unique set of CT images - and eventually of functional images - which is used for delineation of target volumes (TV) and organs at risk (OAR) and for dose calculation. Restricting the delineation and dose calculation solely on pre-treatment images is an oversimplification as it is only a snapshot of the patient's anatomy. The objectives of the present study were (1) to assess the consequences of anatomic modification in dose distribution for both TVs and OARs; (2) to assess the potential benefit of adaptive strategies using Helical Tomotherapy (HT); and (3) to compare CT-based and FDG-PET-based adaptive planning strategies.

View Article and Find Full Text PDF

Purpose: The aim of this study was to validate a gradient-based segmentation method for GTV delineation on FDG-PET in NSCLC through surgical specimen, in comparison with threshold-based approaches and CT.

Materials And Methods: Ten patients with stage I-II NSCLC were prospectively enrolled. Before lobectomy, all patients underwent contrast enhanced CT and gated FDG-PET.

View Article and Find Full Text PDF

Background And Purpose: Adaptive strategies in radiotherapy (RT) require the knowledge of the total dose given to every organ of the body. Because of anatomical changes and setup errors non-rigid registration is necessary to map the different dose fractions to a common reference. This study evaluates practically if the accumulation of all of these registered dose fractions must take radiobiology into account in a classical clinical setting.

View Article and Find Full Text PDF

Purpose: Anatomic changes occur during radiation therapy (RT) for head and neck (H&N) tumors. This study aims at quantifying the volumetric and positional changes of gross tumor volumes (GTV), clinical target volumes (CTV), and organs at risk (OAR). Anatomic (CT) and functional (FDG-PET) imaging were used for the delineation of the GTVs.

View Article and Find Full Text PDF

Denoising is a key step in the processing of medical images. It aims at improving both the interpretability and visual aspect of the images. Yet, designing a robust and efficient denoising tool remains an unsolved challenge and a specific issue concerns the noise model.

View Article and Find Full Text PDF

Purpose: Helical tomotherapy is a modality of radiation treatment delivery which is equipped with an on-board imaging device (MVCT) allowing for daily patient set-up verification and correction in the medial-lateral (m-l), cranial-caudal (c-c), anterior-posterior (a-p) and transversal angular (roll) directions. In this study, we measured set-up deviations and evaluated different MVCT protocols for brain and head and neck (H&N) cancer patients.

Materials And Methods: The daily set-up errors of 75 H&N cancer patients immobilized with 5-point fixation thermoplastic masks and 30 brain cancer patients immobilized with 3-point fixation thermoplastic masks were detected by matching the MVCT with the treatment planning CT images.

View Article and Find Full Text PDF

Background And Purpose: Weight loss, tumor shrinkage, and tissue edema induce substantial modification of patient's anatomy during head and neck (HN) radiotherapy (RT) or chemo-radiotherapy. These modifications may impact on the dose distribution to both target volumes (TVs) and organs at risk (OARs). Adaptive radiotherapy (ART) where patients are re-imaged and re-planned several times during the treatment is a possible strategy to improve treatment delivery.

View Article and Find Full Text PDF