While neutrophils are the predominant cell type in the lungs of humans with active tuberculosis (TB), they are relatively scarce in the lungs of most strains of mice that are used to study the disease. However, similar to humans, neutrophils account for approximately 45% of CD45+ cells in the lungs of mice on a high-cholesterol (HC) diet following infection with (Mtb). We hypothesized that the susceptibility of HC mice might arise from an unrestrained feed-forward loop in which production of neutrophil extracellular traps (NETs) stimulates production of type I interferons by pDCs which in turn leads to the recruitment and activation of more neutrophils, and demonstrated that depleting neutrophils, depleting plasmacytoid dendritic cells (pDCs), or blocking type I interferon signaling, improved the outcome of infection.
View Article and Find Full Text PDFPhosphosignaling networks control cellular processes. We built kinase-mediated regulatory networks elicited by thrombin stimulation of brain endothelial cells using two computational strategies: Temporal Pathway Synthesizer (TPS), which uses phosphoproteomics data as input, and Temporally REsolved KInase Network Generation (TREKING), which uses kinase inhibitor screens. TPS and TREKING predicted overlapping barrier-regulatory kinases connected with unique network topology.
View Article and Find Full Text PDFPhosphosignaling networks control cellular processes. We built kinase-mediated regulatory networks elicited by thrombin stimulation of brain endothelial cells using two computational strategies: Temporal Pathway Synthesizer (TPS), which uses phosphoproetiomics data as input, and Temporally REsolved KInase Network Generation (TREKING), which uses kinase inhibitor screens. TPS and TREKING predicted overlapping barrier-regulatory kinases connected with unique network topology.
View Article and Find Full Text PDFSummary: perox-per-cell automates cumbersome, image-based data collection tasks often encountered in peroxisome research. The software processes microscopy images to quantify peroxisome features in yeast cells. It uses off-the-shelf image processing tools to automatically segment cells and peroxisomes and then outputs quantitative metrics including peroxisome counts per cell and spatial areas.
View Article and Find Full Text PDFTraditional antiviral therapies often have limited effectiveness due to toxicity and the emergence of drug resistance. Host-based antivirals are an alternative, but can cause nonspecific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection.
View Article and Find Full Text PDFTo date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies.
View Article and Find Full Text PDFPulmonary (Mtb) infection results in highly heterogeneous lesions ranging from granulomas with central necrosis to those primarily comprised of alveolitis. While alveolitis has been associated with prior immunity in human post-mortem studies, the drivers of these distinct pathologic outcomes are poorly understood. Here, we show that these divergent lesion structures can be modeled in C3HeB/FeJ mice and are regulated by prior immunity.
View Article and Find Full Text PDFautomates cumbersome, image-based data collection tasks often encountered in peroxisome research. The software processes microscopy images to quantify peroxisome features in yeast cells. It uses off-the-shelf image processing tools to automatically segment cells and peroxisomes and then outputs quantitative metrics including peroxisome counts per cell and spatial areas.
View Article and Find Full Text PDFFront Cell Infect Microbiol
April 2024
Introduction: Dengue is an arboviral disease causing severe illness in over 500,000 people each year. Currently, there is no way to constrain dengue in the clinic. Host kinase regulators of dengue virus (DENV) infection have the potential to be disrupted by existing therapeutics to prevent infection and/or disease progression.
View Article and Find Full Text PDFThe Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accessory protein Orf6 works as an interferon antagonist, in part, by inhibiting the nuclear import activated p-STAT1, an activator of interferon-stimulated genes, and the export of the poly(A) RNA. Insight into the transport regulatory function of Orf6 has come from the observation that Orf6 binds to the nuclear pore complex (NPC) components: Rae1 and Nup98. To gain further insight into the mechanism of Orf6-mediated transport inhibition, we examined the role of Rae1 and Nup98.
View Article and Find Full Text PDFWe developed an R codebase that uses a publicly-available compendium of transcriptomes from yeast single-gene deletion strains - the Deleteome - to predict gene function. Primarily, the codebase provides functions for identifying similarities between the transcriptomic signatures of deletion strains, thereby associating genes of interest with others that may be functionally related. We describe how our tool predicted a novel relationship between the yeast nucleoporin Nup170 and the Ctf18-RFC complex, which was confirmed experimentally, revealing a previously unknown link between nuclear pore complexes and the DNA replication machinery.
View Article and Find Full Text PDFTraditional antiviral therapies often have limited effectiveness due to toxicity and development of drug resistance. Host-based antivirals, while an alternative, may lead to non-specific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection.
View Article and Find Full Text PDFTo date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies.
View Article and Find Full Text PDFAs eukaryotic cells progress through cell division, the nuclear envelope (NE) membrane must expand to accommodate the formation of progeny nuclei. In Saccharomyces cerevisiae, closed mitosis allows visualization of NE biogenesis during mitosis. During this period, the SUMO E3 ligase Siz2 binds the inner nuclear membrane (INM) and initiates a wave of INM protein SUMOylation.
View Article and Find Full Text PDFThe nuclear pore complex (NPC) physically interacts with chromatin and regulates gene expression. The Saccharomyces cerevisiae inner ring nucleoporin Nup170 has been implicated in chromatin organization and the maintenance of gene silencing in subtelomeric regions. To gain insight into how Nup170 regulates this process, we used protein-protein interactions, genetic interactions, and transcriptome correlation analyses to identify the Ctf18-RFC complex, an alternative proliferating cell nuclear antigen (PCNA) loader, as a facilitator of the gene regulatory functions of Nup170.
View Article and Find Full Text PDFInfants who are human immunodeficiency virus (HIV)-exposed uninfected (iHEU) experience higher risk of infectious morbidity than infants HIV-unexposed uninfected (iHUU). We compared tuberculosis (TB) infection prevalence in 418 Bacillus Calmette-Guérin vaccinated sub-Saharan African iHEU and iHUU aged 9-18 months using T-SPOT.TB.
View Article and Find Full Text PDFUnderstanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge.
View Article and Find Full Text PDFCOVID-19, caused by the coronavirus SARS-CoV-2, represents a serious worldwide health issue, with continually emerging new variants challenging current therapeutics. One promising alternate therapeutic avenue is represented by nanobodies, small single-chain antibodies derived from camelids with numerous advantageous properties and the potential to neutralize the virus. For identification and characterization of a broad spectrum of anti-SARS-CoV-2 Spike nanobodies, we further optimized a yeast display method, leveraging a previously published mass spectrometry-based method, using B-cell complementary DNA from the same immunized animals as a source of VH sequences.
View Article and Find Full Text PDFBackground: Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge.
Methods: To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each.
Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins as viral-induced hypomorphs.
View Article and Find Full Text PDFBiomedical personnel can become contaminated with nonhazardous reagents used in the laboratory. We describe molecular studies performed on nasal secretions collected longitudinally from asymptomatic laboratory coworkers to determine if they were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) circulating in the community or with SARS-CoV-2 DNA from a plasmid vector. Participants enrolled in a prospective study of incident SARS-CoV-2 infection had nasal swabs collected aseptically by study staff at enrollment, followed by weekly self-collection of anterior nasal swabs.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2022
The mechanistic target of rapamycin (mTOR) functions in two distinct complexes: mTORC1, and mTORC2. mTORC1 has been implicated in the pathogenesis of flaviviruses including dengue, where it contributes to the establishment of a pro-viral autophagic state. Activation of mTORC2 occurs upon infection with some viruses, but its functional role in viral pathogenesis remains poorly understood.
View Article and Find Full Text PDFBackground: Asymptomatic and pre-symptomatic SARS-CoV-2 infections may contribute to ongoing community transmission, however, the benefit of routine screening of asymptomatic individuals in low-risk populations is unclear.
Methods: To identify SARS-CoV-2 infections 553 seronegative individuals were prospectively followed for 52 weeks. From 4/2020-7/2021, participants submitted weekly self-collected nasal swabs for rtPCR and completed symptom and exposure surveys.
Prior to initiating symptomatic malaria, a single Plasmodium sporozoite infects a hepatocyte and develops into thousands of merozoites, in part by scavenging host resources, likely delivered by vesicles. Here, we demonstrate that host microtubules (MTs) dynamically reorganize around the developing liver stage (LS) parasite to facilitate vesicular transport to the parasite. Using a genome-wide CRISPR-Cas9 screen, we identified host regulators of cytoskeleton organization, vesicle trafficking, and ER/Golgi stress that regulate LS development.
View Article and Find Full Text PDF