This study aims to explore the potential of high-resolution brain functional connectivity based on electroencephalogram, a non-invasive low-cost technique, to be translated into a long-overdue biomarker and a diagnostic method for Alzheimer's disease (AD).The paper proposes a novel ultra-high-resolution time-frequency nonlinear cross-spectrum method to construct a promising biomarker of AD pathophysiology. Specifically, using the peak frequency estimated from a revised Hilbert-Huang transformation (RHHT) cross-spectrum as a biomarker, the support vector machine classifier is used to distinguish AD from healthy controls (HCs).
View Article and Find Full Text PDFFunctional connectivity and effective connectivity of the human brain, representing statistical dependence and directed information flow between cortical regions, significantly contribute to the study of the intrinsic brain network and its functional mechanism. Many recent studies on electroencephalography (EEG) have been focusing on modeling and estimating brain connectivity due to increasing evidence that it can help better understand various brain neurological conditions. However, there is a lack of a comprehensive updated review on studies of EEG-based brain connectivity, particularly on visualization options and associated machine learning applications, aiming to translate those techniques into useful clinical tools.
View Article and Find Full Text PDFHead Mounted Display (HMD) based Augmented Reality (AR) is being increasingly used in manufacturing and maintenance. However, limited research has been done to understand user interaction with AR interfaces, which may lead to poor usability, risk of occupational hazards, and low acceptance of AR systems. This paper uses a theoretically-driven approach to interaction design to investigate the impact of different AR modalities in terms of information mode (i.
View Article and Find Full Text PDFPulsed thermography has been used significantly over the years to detect near and sub-surface damage in both metals and composites. Where most of the research has been in either improving the detectability and/or its applicability to specific parts and scenarios, efforts to analyse and establish the level of uncertainty in the measurements have been very limited. This paper presents the analysis of multiple uncertainties associated with thermographic measurements under multiple scenarios such as the choice of post-processing algorithms; multiple flash power settings; and repeat tests on four materials, i.
View Article and Find Full Text PDFHigh-quality medical ultrasound imaging is definitely concerning motion blur, while medical image analysis requires motionless and accurate data acquired by sonographers. The main idea of this paper is to establish some motion blur invariant in both frequency and moment domain to estimate the motion parameters of ultrasound images. We propose a discrete model of point spread function of motion blur convolution based on the Dirac delta function to simplify the analysis of motion invariant in frequency and moment domain.
View Article and Find Full Text PDF