Publications by authors named "John A Reidy"

Humans are exposed to phthalates due to the ubiquitous use of these chemicals in consumer products. In the body, phthalates metabolize quickly to form hydrolytic and oxidative monoesters which, in turn, can be glucuronidated before urinary excretion. Exposure assessment studies typically report the total urinary concentrations of phthalate metabolites (i.

View Article and Find Full Text PDF

Background: The capability of benzophenone-3 (BP-3) to absorb and dissipate ultraviolet radiation facilitates its use as a sunscreen agent. BP-3 has other uses in many consumer products (e.g.

View Article and Find Full Text PDF

Background: Triclosan is a synthetic chemical with broad antimicrobial activity that has been used extensively in consumer products, including personal care products, textiles, and plastic kitchenware.

Objectives: This study was designed to assess exposure to triclosan in a representative sample > or = 6 years of age of the U.S.

View Article and Find Full Text PDF

Background: Bisphenol A (BPA) and 4-tertiary-octylphenol (tOP) are industrial chemicals used in the manufacture of polycarbonate plastics and epoxy resins (BPA) and nonionic surfactants (tOP). These products are in widespread use in the United States.

Objectives: We aimed to assess exposure to BPA and tOP in the U.

View Article and Find Full Text PDF

Di-n-butyl phthalate (DBP) is widely used in consumer products. In humans and in rats, DBP is metabolized to mono-n-butyl phthalate (MBP). MBP may also further oxidize to other metabolites of DBP.

View Article and Find Full Text PDF

Phthalates are ubiquitous industrial chemicals with high potential for human exposure. Validated analytical methods to measure trace concentrations of phthalate metabolites in humans are essential for assessing exposure to phthalates. Previously, we developed a sensitive and accurate automated analytical method for measuring up to 16 phthalate metabolites in human urine by using on-line solid phase extraction coupled with isotope dilution-high performance liquid chromatography (HPLC)-electrospray ionization-tandem mass spectrometry.

View Article and Find Full Text PDF

We measured the concentrations of 11 polyfluoroalkyl compounds (PFCs), including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS) in 1562 serum samples collected from a representative U.S. population 12 years of age and older in the 1999-2000 National Health and Nutrition Examination Survey.

View Article and Find Full Text PDF

Human exposure to environmental phenols can be assessed by measuring the urinary concentrations of these compounds or their metabolites. Total concentrations, which include both free and conjugated (i.e.

View Article and Find Full Text PDF

Background: Parabens appear frequently as antimicrobial preservatives in cosmetic products, in pharmaceuticals, and in food and beverage processing. In vivo and in vitro studies have revealed weak estrogenic activity of some parabens. Widespread use has raised concerns about the potential human health risks associated with paraben exposure.

View Article and Find Full Text PDF

Diisononyl phthalate (DINP) is a complex mixture of predominantly nine-carbon branched-chain dialkyl phthalate isomers. Similar to di(2-ethylhexyl) phthalate, a widely used phthalate, DINP causes antiandrogenic effects on developing rodent male fetuses. Traditionally, assessment of human exposure to DINP has been done using monoisononyl phthalate (MINP) , the hydrolytic metabolite of DINP, as a biomarker.

View Article and Find Full Text PDF

Manufacturers have used perfluorochemicals (PFCs) since the 1950s in many industrial and consumer products, including protective coatings for fabrics and carpet, paper coatings, insecticide formulations, and surfactants. Some PFCs are persistent ubiquitous contaminants in the environment and in humans. Exposures to PFCs result in potential developmental and other adverse effects in animals.

View Article and Find Full Text PDF

Phthalates are industrial chemicals with many commercial applications. Because of their common usage, the general population is exposed to phthalates. A sensitive and selective analytical method is necessary to accurately determine the phthalate levels in serum.

View Article and Find Full Text PDF

Di-n-octyl phthalate (DnOP) is found as a component of mixed C6-C10 linear-chain phthalates used as plasticizers in various polyvinyl chloride applications, including flooring and carpet tiles. Following exposure and absorption, DnOP is metabolized to its hydrolytic monoester, mono-n-octyl phthalate (MnOP), and other oxidative products. The urinary levels of one of these oxidative metabolites, mono-(3-carboxypropyl) phthalate (MCPP), were about 560-fold higher than MnOP in Sprague-Dawley rats dosed with DnOP by gavage.

View Article and Find Full Text PDF

Perfluorinated chemicals (PFCs) are used in multiple consumer products. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the most widely studied PFCs, may be potential developmental, reproductive, and systemic toxicants. Although PFCs seem to be ubiquitous contaminants found both in humans and animals, geographic differences may exist in human exposure patterns to PFCs.

View Article and Find Full Text PDF

Two studies were designed to examine amniotic fluid and maternal urine concentrations of the di(2-ethylhexyl) phthalate (DEHP) metabolite mono(2-ethylhexyl) phthalate (MEHP) and the di-n-butyl phthalate (DBP) metabolite monobutyl phthalate (MBP) after administration of DEHP and DBP during pregnancy. In the first study, pregnant Sprague-Dawley rats were administered 0, 11, 33, 100, or 300 mg DEHP/kg/day by oral gavage starting on gestational day (GD) 7. In the second study, DBP was administered by oral gavage to pregnant Sprague-Dawley rats at doses of 0, 100, or 250 mg/kg/day starting on GD 13.

View Article and Find Full Text PDF

In assessment of exposure to environmental contaminants, the use of unconventional matrices is becoming an increasingly important area of research. Saliva is one of the most promising alternative matrices because its collection is easy, noninvasive, and inexpensive. In this study, we measured the salivary concentrations of 14 phthalate metabolites in 39 anonymous adult volunteers using isotope-dilution, automated solid phase extraction-high performance liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Bisphenol A (BPA) is used to manufacture polycarbonate plastic and epoxy resins, which are used in baby bottles, as protective coatings on food containers, and for composites and sealants in dentistry. 4-Nonylphenol (NP) is used to make nonylphenol ethoxylates, nonionic surfactants applied as emulsifying, wetting, dispersing, or stabilizing agents in industrial, agricultural, and domestic consumer products. The potential for human exposure to BPA and NP is high because of their widespread use.

View Article and Find Full Text PDF

Chromosomal mosaicism is one of the most vexing problems for clinical cytogenetic laboratories and personnel time used for analysis at the microscope is one of the principle costs in cytogenetic laboratories. We use data collected from 26 cytogenetic laboratories to evaluate whether the American College of Medical Genetics guidelines for minimum number of cells to count to exclude mosaicism in amniotic fluid specimens is appropriate. An accurate estimate of the number of mosaics that are missed by current cell counting practices is an important step in this process.

View Article and Find Full Text PDF

We improved our previous analytical method to measure phthalate metabolites in urine as biomarkers for phthalate exposure by automating the solid-phase extraction (SPE) procedure and expanding the analytical capability to quantify four additional metabolites: phthalic acid, mono-3-carboxypropyl phthalate, mono-isobutyl phthalate (miBP), and monomethyl isophthalate. The method, which involves automated SPE followed by isotope dilution-high performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS), allows for the quantitative measurement of 15 phthalate metabolites in urine with detection limits in the low ng/ml range. SPE automation allowed for the unattended sequential extraction of up to 100 samples at a time, and resulted in an increased sample throughput, lower solvent use, and better reproducibility than the manual SPE.

View Article and Find Full Text PDF

We measured the urinary monoester metabolites of seven commonly used phthalates in approximately 2,540 samples collected from participants of the National Health and Nutrition Examination Survey (NHANES), 1999-2000, who were greater than or equal to 6 years of age. We found detectable levels of metabolites monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono-(2-ethylhexyl) phthalate (MEHP) in > 75% of the samples, suggesting widespread exposure in the United States to diethyl phthalate, dibutyl phthalate or diisobutylphthalate, benzylbutyl phthalate, and di-(2-ethylhexyl) phthalate, respectively. We infrequently detected monoisononyl phthalate, mono-cyclohexyl phthalate, and mono-n-octyl phthalate, suggesting that human exposures to di-isononyl phthalate, dioctylphthalate, and dicyclohexyl phthalate, respectively, are lower than those listed above, or the pathways, routes of exposure, or pharmacokinetic factors such as absorption, distribution, metabolism, and elimination are different.

View Article and Find Full Text PDF

Exposure to di-(2-ethylhexyl) phthalate (DEHP) is prevalent based on the measurement of its hydrolytic metabolite mono-(2-ethylhexyl) phthalate (MEHP) in the urine of 78% of the general U.S. population studied in the 1999-2000 National Health and Nutrition Examination Survey (NHANES).

View Article and Find Full Text PDF

Metabolism of most diesters of phthalic acid in humans occurs by an initial phase I biotransformation in which phthalate monoesters are formed, followed by a phase II biotransformation in which phthalate monoesters react with glucuronic acid to form their respective glucuronide conjugates. The phase II conjugation increases water solubility and facilitates urinary excretion of phthalate, and reduces the potential biological activity because the putative biologically active species is the monoester metabolite. In this study, we report percentages of glucuronidation of four common phthalate monoesters, monoethyl (mEP), monobutyl (mBP), monobenzyl (mBzP), and mono-2-ethylhexyl phthalate (mEHP) in a subset of urine (mEP n=262, mBP n=283, mBzP n=328, mEHP n=119) and serum (mEP n=93, mBP n=149, mEHP n=141) samples from the general US population.

View Article and Find Full Text PDF

We developed a highly sensitive method for the quantitative detection of nine phthalate ester metabolites in human serum. This method requires denaturation of the serum enzymes immediately after blood collection to avoid the hydrolysis of the contaminant diester parent compounds introduced during blood collection and storage. Before analysis, the samples were subjected to an enzymatic deconjugation to hydrolyze the glucuronidated phthalate monoesters and a solid-phase extraction to isolate the monoesters from other serum components.

View Article and Find Full Text PDF

Phthalates are a group of industrial chemicals with many commercial uses, such as solvents, additives, and plasticizers. For example, di-(2-ethylhexyl) phthalate (DEHP) is added in varying amounts to certain plastics, such as polyvinyl chloride, to increase their flexibility. In humans, phthalates are metabolized to their respective monoesters, conjugated, and eliminated.

View Article and Find Full Text PDF