Publications by authors named "John A Payne"

Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume.

View Article and Find Full Text PDF

Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K(+)-Cl(-) cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity.

View Article and Find Full Text PDF

Glykys et al. (Reports, 7 February 2014, p. 670) conclude that, rather than ion transporters, "local impermeant anions establish the neuronal chloride concentration" and thereby determine "the magnitude and direction of GABAAR currents at individual synapses.

View Article and Find Full Text PDF

The anterior piriform cortex (APC) is activated by, and is the brain area most sensitive to, essential (indispensable) amino acid (IAA) deficiency. The APC is required for the rapid (20 min) behavioral rejection of IAA deficient diets and increased foraging, both crucial adaptive functions supporting IAA homeostasis in omnivores. The biochemical mechanisms signaling IAA deficiency in the APC block initiation of translation in protein synthesis via uncharged tRNA and the general amino acid control kinase, general control nonderepressing kinase 2.

View Article and Find Full Text PDF

The cation chloride cotransporters (CCCs) represent an important family of transporters that plays key roles in vectorial electrolyte movement across epithelia and in intracellular chloride homeostasis of neurons and muscle cells. The CCCs are composed of three broad groups, two of which include multiple isoforms: Na-Cl cotransporter (NCC; SLC12A3), Na-K-2Cl cotransporter (NKCC; SLC12A1-2), and K-Cl cotransporter (KCC; SLC12A4-7). The CCCs are inhibited by clinically relevant drugs, including loop diuretics that inhibit NKCC2 in the renal thick ascending limb and thiazide diuretics that inhibit NCC in the renal distal tubule.

View Article and Find Full Text PDF

Using antibodies prepared against a unique region (exon 22-24) of rat K(+)-Cl(-) cotransporter-2 (KCC2), we confirmed that the ~140-kDa KCC2 protein is exclusively expressed in rat brain, but in chicken, we observed strong reactivity not only with the ~140-kDa KCC2 protein in brain but also a slightly larger ~145-kDa protein in heart. In silico analysis showed that while exon 22 of KCC2 is unique to this isoform in therian mammals, it is retained in KCC2's closest paralog, KCC4, of lower vertebrates, including chicken. To eliminate potential cross-reactivity with chicken KCC4, the antibodies were preadsorbed with blocking peptides prepared over the only two regions showing significant sequence identity to chicken KCC4.

View Article and Find Full Text PDF

The potassium chloride cotransporter KCC2 plays a major role in the maintenance of transmembrane chloride potential in mature neurons; thus KCC2 activity is critical for hyperpolarizing membrane currents generated upon the activation of gamma-aminobutyric acid type A and glycine (Gly) receptors that underlie fast synaptic inhibition in the adult central nervous system. However, to date an understanding of the cellular mechanism that neurons use to modulate the functional expression of KCC2 remains rudimentary. Using Escherichia coli expression coupled with in vitro kinase assays, we first established that protein kinase C (PKC) can directly phosphorylate serine 940 (Ser(940)) within the C-terminal cytoplasmic domain of KCC2.

View Article and Find Full Text PDF

We examined the expression of Slc12a2 (NKCC1) transcripts in the developing mouse by Northern blot analysis and in situ hybridization (ISH) using riboprobes transcribed from a cDNA encoding the transmembrane domain of human Slc12a2. In developing kidney, the 7.5-kb Slc12a2 transcript was expressed at all stages examined (13.

View Article and Find Full Text PDF

Cation chloride cotransporters have been proposed to play a role in the modulation of neuronal responses to gamma-aminobutyric acid (GABA). In conditions of neuronal damage, where neuronal excitability is increased, the expression of the KCC2 transporter is decreased. This is also seen in spinal cord in models of neuropathic pain.

View Article and Find Full Text PDF

Both Cs(+) and NH(4)(+) alter neuronal Cl(-) homeostasis, yet the mechanisms have not been clearly elucidated. We hypothesized that these two cations altered the operation of the neuronal K(+)-Cl(-) cotransporter (KCC2). Using exogenously expressed KCC2 protein, we first examined the interaction of cations at the transport site of KCC2 by monitoring furosemide-sensitive (86)Rb(+) influx as a function of external Rb(+) concentration at different fixed external cation concentrations (Na(+), Li(+), K(+), Cs(+), and NH(4)(+)).

View Article and Find Full Text PDF

GABA-mediated fast-hyperpolarizing inhibition depends on extrusion of chloride by the neuron-specific K-Cl cotransporter, KCC2. Here we show that sustained interictal-like activity in hippocampal slices downregulates KCC2 mRNA and protein expression in CA1 pyramidal neurons, which leads to a reduced capacity for neuronal Cl- extrusion. This effect is mediated by endogenous BDNF acting on tyrosine receptor kinase B (TrkB), with down-stream cascades involving both Shc/FRS-2 (src homology 2 domain containing transforming protein/FGF receptor substrate 2) and PLCgamma (phospholipase Cgamma)-cAMP response element-binding protein signaling.

View Article and Find Full Text PDF

Electrical signaling in neurons is based on the operation of plasmalemmal ion pumps and carriers that establish transmembrane ion gradients, and on the operation of ion channels that generate current and voltage responses by dissipating these gradients. Although both voltage- and ligand-gated channels are being extensively studied, the central role of ion pumps and carriers is largely ignored in current neuroscience. Such an information gap is particularly evident with regard to neuronal Cl- regulation, despite its immense importance in the generation of inhibitory synaptic responses by GABA- and glycine-gated anion channels.

View Article and Find Full Text PDF