Publications by authors named "John A Oates"

Lipid peroxidation generates reactive dicarbonyls including isolevuglandins (IsoLGs) and malondialdehyde (MDA) that covalently modify proteins. Humans with familial hypercholesterolemia (FH) have increased lipoprotein dicarbonyl adducts and dysfunctional HDL. We investigate the impact of the dicarbonyl scavenger, 2-hydroxybenzylamine (2-HOBA) on HDL function and atherosclerosis in Ldlr mice, a model of FH.

View Article and Find Full Text PDF

Prostaglandin E is produced in response to inflammation, often associated with human disease. As prostaglandins are rapidly metabolized, quantification of end urinary metabolites depend on chemical synthesis of isotopically labeled standards to support metabolite quantification. A concise synthesis of tetranor-PGE is described including a late stage incorporation of an isotopically labeled side-chain.

View Article and Find Full Text PDF

Background: 2-Hydroxybenzylamine (2-HOBA) is a selective dicarbonyl electrophile scavenger being developed as a nutritional supplement to help protect against the development of conditions associated with dicarbonyl electrophile formation, such as the cognitive decline observed with Mild Cognitive Impairment or Alzheimer's disease.

Methods: This study evaluated the safety, tolerability, and pharmacokinetics of repeated oral doses of 2-HOBA acetate (500 or 750 mg) administered to healthy volunteers every eight hours for two weeks. The effects of 2-HOBA on cyclooxygenase function and cerebrospinal fluid penetrance of 2-HOBA were also investigated.

View Article and Find Full Text PDF

Background: 2-Hydroxybenzylamine (2-HOBA) is a selective scavenger of dicarbonyl electrophiles that protects proteins and lipids from being modified by these electrophiles. It is currently being developed for use as a nutritional supplement to help maintain good health and protect against the development of conditions associated with dicarbonyl electrophile formation, such as the cognitive decline associated with Mild Cognitive Impairment and Alzheimer's disease.

Methods: In this first-in-human study, the safety, tolerability, and pharmacokinetics of six ascending single oral doses of 2-HOBA acetate were tested in eighteen healthy human volunteers.

View Article and Find Full Text PDF

2-hydroxybenzylamine (2-HOBA), a compound found in buckwheat, is a potent scavenger of reactive γ-ketoaldehydes, which are increased in diseases associated with inflammation and oxidative stress. While the potential of 2-HOBA is promising, studies were needed to characterize the safety of the compound before clinical trials. In a series of experiments, the risks of 2-HOBA-mediated mutagenicity and cardio-toxicity were assessed in vitro.

View Article and Find Full Text PDF

Background: Acute kidney injury independently predicts mortality in falciparum malaria. It is unknown whether acetaminophen's capacity to inhibit plasma hemoglobin-mediated oxidation is renoprotective in severe malaria.

Methods: This phase 2, open-label, randomized controlled trial conducted at two hospitals in Bangladesh assessed effects on renal function, safety, pharmacokinetic (PK) properties and pharmacodynamic (PD) effects of acetaminophen.

View Article and Find Full Text PDF

Meta-analyses have demonstrated that low-dose aspirin reduces the risk of developing adenocarcinoma metastasis, and when colon cancer is detected during aspirin treatment, there is a remarkable 83% reduction in risk of metastasis. As platelets participate in the metastatic process, the antiplatelet action of low-dose aspirin likely contributes to its antimetastatic effect. Cycloxooxygenase-2 (COX-2)-derived prostaglandin E (PGE) also contributes to metastasis, and we addressed the hypothesis that low-dose aspirin also inhibits PGE biosynthesis.

View Article and Find Full Text PDF

The thromboxane synthase converts prostaglandin H(2) to thromboxane A(2) and malondialdehyde (MDA) in approximately equimolar amounts. A reactive dicarbonyl, MDA forms covalent adducts of amino groups, including the ε-amine of lysine, but the importance of this reaction in platelets was unknown. Utilizing a novel LC/MS/MS method for analysis of one of the MDA adducts, the dilysyl-MDA cross-link, we demonstrated that dilysyl-MDA cross-links in human platelets are formed following platelet activation via the cyclooxygenase (COX)-1/thromboxane synthase pathway.

View Article and Find Full Text PDF

Background: Triamterene, because of its potassium-sparing properties, is frequently used in combination with hydrochlorothiazide (HCTZ) to treat patients with hypertension. By inhibiting the epithelial sodium channel (ENaC) in the cortical collecting duct, triamterene reduces potassium secretion, thus reducing the risk of hypokalemia. Whether triamterene has an independent effect on blood pressure (BP) has not been well studied.

View Article and Find Full Text PDF

Objectives: This trial evaluated the efficacy of acetaminophen in reducing oxidative injury, as measured by plasma F2-isoprostanes, in adult patients with severe sepsis and detectable plasma cell-free hemoglobin.

Design: Single-center, randomized, double-blind, placebo-controlled phase II trial.

Setting: Medical ICU in a tertiary, academic medical center.

View Article and Find Full Text PDF

Base propenals are products of the reaction of DNA with oxidants such as peroxynitrite and bleomycin. The most reactive base propenal, adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction of adenine propenal with protein has not yet been investigated. A survey of the reaction of adenine propenal with amino acids revealed that lysine and cysteine form adducts, whereas histidine and arginine do not.

View Article and Find Full Text PDF

Inflammation and subsequent cyclooxygenase-2 (COX-2) activity has long been linked with the development of cancer, although little is known about any epigenetic effects of COX-2. A product of COX-2 activation, levuglandin (LG) quickly forms covalent bonds with nearby primary amines, such as those in lysine, which leads to LG-protein adducts. Here, we demonstrate that COX-2 activity causes LG-histone adducts in cultured cells and liver tissue, detectable through LC-MS, with the highest incidence in histone H4.

View Article and Find Full Text PDF

Acetaminophen (ApAP) is an electron donor capable of reducing radicals generated by redox cycling of hemeproteins. It acts on the prostaglandin H synthases (cyclooxygenases; COXs) to reduce the protoporphyrin radical cation in the peroxidase site of the enzyme, thus preventing the intra-molecular electron transfer that generates the Tyr385 radical required for abstraction of a hydrogen from arachidonic acid to initiate prostaglandin synthesis. Unrelated to this pharmacological action, metabolism of ApAP by CYPs yields an iminoquinone electrophile that is responsible for the hepatotoxicity, which results from high doses of the drug.

View Article and Find Full Text PDF

Objective: Low-dose aspirin prevents platelet aggregation by suppressing thromboxane A2 (TXA2 ) synthesis. However, in some individuals TXA2 suppression by aspirin is impaired, indicating suboptimal inhibition of platelet cyclooxygenase 1 (COX-1) by aspirin. Because patients with systemic lupus erythematosus (SLE) have increased risk of thrombotic events, many receive aspirin; however, the efficacy of aspirin in SLE has not been determined.

View Article and Find Full Text PDF

Cytochrome (cyt) c can uncouple from the respiratory chain following mitochondrial stress and catalyze lipid peroxidation. Accumulating evidence shows that this phenomenon impairs mitochondrial respiratory function and also initiates the apoptotic cascade. Therefore, under certain conditions a pharmacological approach that can inhibit cyt c catalyzed lipid peroxidation may be beneficial.

View Article and Find Full Text PDF

Interindividual variation in the ability of aspirin to inhibit platelet cyclooxygenase-1 (COX-1) could account for some on-treatment cardiovascular events. Here, we sought to determine whether there are clinical phenotypes that are associated with a suboptimal pharmacological effect of aspirin. In a prospective, 2-week study, we evaluated the effect of aspirin (81 mg) on platelet COX-1 in 135 patients with stable coronary artery disease by measuring serum thromboxane B(2) (sTxB(2)) as an indicator of inhibition of platelet COX-1.

View Article and Find Full Text PDF

MALDI-imaging mass spectrometry (IMS) has been shown to be a powerful tool to study drug distributions in organ tissue as well as whole animal bodies. Nevertheless, not all drugs are amenable to MALDI while others may be limited by poor sensitivity poor sensitivity. The use of chemical derivatization to improve detection of small molecules by mass spectrometry techniques is well documented.

View Article and Find Full Text PDF

COX-2 inhibition reduces the incidence of colorectal neoplasia. The increased risk of thrombotic cardiovascular events produced by selective or nonselective COX-2 inhibitors, however, has confounded the consideration of employing them in cancer prevention. Developing a strategy for preventing colorectal cancer by inhibiting COX-2 depends on research advances in several key areas, including predictive biomarkers to identify people at the lowest risk for cardiovascular events, the molecular mechanisms whereby interdicting the COX-2 pathway produces thrombotic events, and the pharmacology of the widely divergent agents that act on COX-2 and its downstream pathway.

View Article and Find Full Text PDF

We report the development of a sensitive liquid chromatography-tandem mass spectrometric assay to quantitate 3-methoxysalicylamine (3-MoSA) in biological samples. Derivatization with 1,1'-thiocarbonyldiimidazole followed by C(18) reverse-phase chromatography allowed the detection of both analyte and internal standard (hexylsalicylamine) using electrospray ionization and selected reaction monitoring (SRM) in positive ion mode. We monitored the transitions from m/z 196.

View Article and Find Full Text PDF

Group IVA cytosolic phospholipase A(2) (cPLA(2)α) catalyzes the first step in the arachidonic acid cascade leading to the synthesis of important lipid mediators, the prostaglandins and leukotrienes. We previously described a patient deficient in cPLA(2)α activity, which was associated with mutations in both alleles encoding the enzyme. In this paper, we describe the biochemical characterization of each of these mutations.

View Article and Find Full Text PDF

Objective: The rate-limiting step in the biosynthesis of thromboxane A(2) (TxA(2)) and 12-hydroxyeicosatetraenoic acid (12-HETE) by platelets is activation of cytosolic phospholipase A(2α) (cPLA(2α)), which releases arachidonic acid, which is the substrate for cyclooxygenase-1 (COX-1) and 12-lipoxygenase. We evaluated signaling via the human platelet thrombin receptors, protease-activated receptor (PAR) 1 and PAR4, to the activation of cPLA(2α), which provides a substrate for the biosynthesis of TxA(2) and 12-HETE.

Methods And Results: Stimulating washed human platelets resulted in delayed biosynthesis of 12-HETE, which continues after maximal formation of TxA(2) is completed, suggesting that 12-HETE is not formed by the same pool of arachidonic acid that provides a substrate to COX-1.

View Article and Find Full Text PDF

Naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid) is a powerful non-selective non-steroidal anti-inflammatory drug that is extensively used as a prescription and over-the-counter medication. Naproxen exhibits gastrointestinal toxicity, but its cardiovascular toxicity may be reduced compared with other drugs in its class. Despite the fact that naproxen has been marketed for many years, the molecular basis of its interaction with cyclooxygenase (COX) enzymes is unknown.

View Article and Find Full Text PDF