In narrow d-band transition metals, electron temperature T(el) can impact the underlying electronic structure for temperatures near and above melt, strongly coupling the ion- and electron-thermal degrees of freedom and producing T(el)-dependent interatomic forces. Starting from the Mermin formulation of density functional theory, we have extended first-principles generalized pseudopotential theory to finite electron temperature and then developed efficient T(el)-dependent model generalized pseudopotential theory interatomic potentials for a Mo prototype. Unlike potentials based on the T(el)=0 electronic structure, the T(el)-dependent model generalized pseudopotential theory potentials yield a high-pressure Mo melt curve consistent with density functional theory quantum simulations, as well as with dynamic experiments, and also support a rich polymorphism in the high-(T,P) phase diagram.
View Article and Find Full Text PDF