Publications by authors named "John A McNeil"

The Microbial Rosetta Stone (MRS) database system was developed to support the law enforcement community by providing a comprehensive and connected microbial pathogen data-information repository. To handle the myriad types of pathogen information required to support law enforcement and intelligence community investigations, a data model previously developed for medical and epidemiological information was enhanced. The data contained in MRS are a broad collection of expert-curated microbial pathogen information, but given the multitude of potential microbes and toxins that may be used in a biocrime or bioterrorism act continual information collection and updating are required.

View Article and Find Full Text PDF

Most of the human genome encodes neither protein nor known functional RNA, yet available approaches to seek meaningful information in the "noncoding" sequence are limited. The unique biology of the X chromosome, one of which is silenced in mammalian females, can yield clues into sequence motifs involved in chromosome packaging and function. Although autosomal chromatin has some capacity for inactivation, evidence indicates that sequences enriched on the X chromosome render it fully competent for silencing, except in specific regions that escape inactivation.

View Article and Find Full Text PDF

Infectious microorganisms are important to multiple communities engaged in biodefense and biosecurity, including the agencies responsible for health, defense, law enforcement, agriculture, and drug and food safety. Many agencies have created lists of high priority infectious microorganisms to prioritize research efforts or to formally control the possession and distribution of specific organisms or toxins. However, the biological classification of infectious microorganisms is often complex and ambiguous, leading to uncertainty and confusion for scientists involved in biosecurity work.

View Article and Find Full Text PDF

Epidemic respiratory infections are responsible for extensive morbidity and mortality within both military and civilian populations. We describe a high-throughput method to simultaneously identify and genotype species of bacteria from complex mixtures in respiratory samples. The process uses electrospray ionization mass spectrometry and base composition analysis of PCR amplification products from highly conserved genomic regions to identify and determine the relative quantity of pathogenic bacteria present in the sample.

View Article and Find Full Text PDF

Background: Thousands of different microorganisms affect the health, safety, and economic stability of populations. Many different medical and governmental organizations have created lists of the pathogenic microorganisms relevant to their missions; however, the nomenclature for biological agents on these lists and pathogens described in the literature is inexact. This ambiguity can be a significant block to effective communication among the diverse communities that must deal with epidemics or bioterrorist attacks.

View Article and Find Full Text PDF

We describe a new approach for infectious disease surveillance that facilitates rapid identification of known and emerging pathogens. The process uses broad-range polymerase chain reaction (PCR) to amplify nucleic acid targets from large groupings of organisms, electrospray ionization mass spectrometry for accurate mass measurements of PCR products, and base composition signature analysis to identify organisms in a sample. We demonstrate this principle by using 14 isolates of 9 diverse Coronavirus spp.

View Article and Find Full Text PDF

RNA molecules fold into characteristic secondary and tertiary structures that account for their diverse functional activities. Many of these RNA structures, or certain structural motifs within them, are thought to recur in multiple genes within a single organism or across the same gene in several organisms and provide a common regulatory mechanism. Search algorithms, such as RNAMotif, can be used to mine nucleotide sequence databases for these repeating motifs.

View Article and Find Full Text PDF