Legumes are a predominant source of isoflavones, termed phytoestrogens, that mimic 17β-estradiol (E2). Phytoalexins are inducible isoflavones produced in plants subjected to environmental stressors (e.g.
View Article and Find Full Text PDFWithin a remarkably short timespan the world population doubled and transitioned from an agrarian to an urban-industrial society. The transition was accompanied by the major expansion of industries that releases enormous amounts of toxicants into the air, water, and soil. Naturally occurring and synthetic chemicals compounds utilized the same signaling system as vertebrate internal cell signaling systems.
View Article and Find Full Text PDFEndocrine-disrupting chemicals (EDCs) are prevalent in the environment, and epidemiologic studies have suggested that human exposure is linked to chronic diseases, such as obesity and diabetes. experiments have further demonstrated that EDCs promote changes in mesenchymal stem cells (MSCs), leading to increases in adipogenic differentiation, decreases in osteogenic differentiation, activation of pro-inflammatory cytokines, increases in oxidative stress, and epigenetic changes. Studies have also shown alteration in trophic factor production, differentiation ability, and immunomodulatory capacity of MSCs, which have significant implications to the current studies exploring MSCs for tissue engineering and regenerative medicine applications and the treatment of inflammatory conditions.
View Article and Find Full Text PDFWithin the past few decades, the concept of endocrine-disrupting chemicals (EDCs) has risen from a position of total obscurity to become a focus of dialogue, debate, and concern among scientists, physicians, regulators, and the public. The emergence and development of this field of study has not always followed a smooth path, and researchers continue to wrestle with questions about the low-dose effects and nonmonotonic dose responses seen with EDCs, their biological mechanisms of action, the true pervasiveness of these chemicals in our environment and in our bodies, and the extent of their effects on human and wildlife health. This review chronicles the development of the unique, multidisciplinary field of endocrine disruption, highlighting what we have learned about the threat of EDCs and lessons that could be relevant to other fields.
View Article and Find Full Text PDFAn estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in response to anti-estrogens. Here we demonstrate glyceollin, an activated soy compound, has anti-estrogen effects in breast cancers.
View Article and Find Full Text PDFExposure of humans to the endocrine disrupter bisphenol A (BPA) has been associated with increased weight and obesity. However, the mechanism(s) by which BPA increases adipose tissue in humans remains to be determined. The goal of this study was to determine the effects of BPA on adipogenesis of cultured human adipose stromal/stem cells (ASCs), precursors to mature adipocytes.
View Article and Find Full Text PDFBackground: Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear.
Objectives: Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology.
J Health Care Poor Underserved
February 2013
Triple negative breast cancer (TNBC) is subtype of breast disease devoid of the estrogen, progesterone, and Her2/neu receptors which are targets for pharmacological intervention. There is a need for novel anti-breast cancer agents that target TNBC. Therefore, novel isochalcone DJ52 was evaluated using the alamar blue dye exclusion assay, the luciferase colony assay, and xenograft models to determine its efficacy and potency.
View Article and Find Full Text PDFThere is growing interest in the diverse signaling pathways that regulate and affect breast tumorigenesis, including the role of phytochemicals and the emerging role of microRNAs (miRNAs). Recent studies demonstrate that miRNAs regulate fundamental cellular and developmental processes at the transcriptional and translational level under normal and disease conditions. While there is growing evidence to support the role of phytoalexin-mediated miRNA regulation of cancer, few reports address this role in breast cancer.
View Article and Find Full Text PDFEndocrine therapy resistance is a primary cause of clinical breast cancer treatment failure. The p38 mitogen activated protein kinase (MAPK) signaling pathway is known to promote ligand independent tumor growth and resistance to endocrine therapy. In this study, we investigated the therapeutic potential of the p38 inhibitor RWJ67657 in the treatment of tamoxifen resistant MDA-MB-361 cells.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
October 2012
Flavonoid phytochemicals act as both agonists and antagonists of the human estrogen receptors (ERs). While a number of these compounds act by directly binding to the ER, certain phytochemicals, such as the flavonoid compounds chalcone and flavone, elicit antagonistic effects on estrogen signaling independent of direct receptor binding. Here we demonstrate both chalcone and flavone function as cell type-specific selective ER modulators.
View Article and Find Full Text PDFBackground: The organochlorine dichlorodiphenyltrichloroethane (DDT), a known estrogen mimic and endocrine disruptor, has been linked to animal and human disorders. However, the detailed mechanism(s) by which DDT affects cellular physiology remains incompletely defined.
Objectives: We and others have shown that DDT activates cell-signaling cascades, culminating in the activation of estrogen receptor-dependent and -independent gene expression.
The estrogen receptor α (ERα) is a transcription factor that mediates the biological effects of 17β-estradiol (E(2)). ERα transcriptional activity is also regulated by cytoplasmic signaling cascades. Here, several Gα protein subunits were tested for their ability to regulate ERα activity.
View Article and Find Full Text PDFBackground: Several environmental agents termed "endocrine disrupting compounds" or EDCs have been reported to bind and activate the estrogen receptor-α (ER). The EDCs DDT and BPA are ubiquitously present in the environment, and DDT and BPA levels in human blood and adipose tissue are detectable in most if not all women and men. ER-mediated biological responses can be regulated at numerous levels, including expression of coding RNAs (mRNAs) and more recently non-coding RNAs (ncRNAs).
View Article and Find Full Text PDFReproduction is a critical element of life. Self-propagation in all living organisms ranging from bacteria to humans involves numerous common strategies. Underlying all reproductive strategies is the essential need for signaling molecules to initiate and maintain the process.
View Article and Find Full Text PDFLegumes are the predominant source of isoflavones considered to be phytoestrogens that mimic the hormone 17β-estradiol (E2). Due to the risks associated with hormone replacement therapy, there is a growing need for alternative sources of estrogenic formulations for the treatment of menopausal symptoms. Legume phytoalexins (induced isoflavones) are produced under conditions of stress that include insect damage, wounding, or application of elicitors.
View Article and Find Full Text PDFDaidzein (1) is a natural estrogenic isoflavone. We report here that 1 can be transformed into anti-estrogenic ligands by simple alkyl substitutions of the 7-hydroxyl hydrogen. To test the effect of such structural modifications on the hormonal activities of the resulting compounds, a series of daidzein analogues have been designed and synthesized.
View Article and Find Full Text PDFBoth estrogen, through the estrogen receptor (ER), and growth factors, through the phosphatidylinositol-3-kinase (PI3K)-AKT pathway, have been shown to independently promote cell survival. Here, we investigated the role of ER/PI3K-AKT crosstalk in the regulation of cell survival in MCF-7 breast carcinoma cells. The ER inhibitor ICI 182,780 was used to determine the requirement of the ER for estrogen in the suppression of tumor necrosis factor-alpha (TNFalpha) induced apoptosis.
View Article and Find Full Text PDFGlyceollins are pterocarpan phytoalexins elicited in high concentrations when soybeans are stressed. We have previously reported that the three glyceollin isomers (GLY I-III) exhibit antiestrogenic properties, which may have significant biological effects upon human exposure. Of the three isomers, we have recently shown that glyceollin I is the most potent antiestrogen.
View Article and Find Full Text PDFCompounds that mimic vertebrate hormone responses are found throughout the environment, and some are implicated in endocrine disruption. Endocrine disruption has been found in humans, wildlife, and even in the partnership of plants and root symbionts. Most endocrine disruption occurs in estrogenic systems.
View Article and Find Full Text PDFGlyceollins, a group of novel phytoalexins isolated from activated soy, have recently been demonstrated to be novel antiestrogens that bind to the estrogen receptor (ER) and inhibit estrogen-induced tumor progression. Our previous publications have focused specifically on inhibition of tumor formation and growth by the glyceollin mixture, which contains three glyceollin isomers (I, II, and III). Here, we show the glyceollin mixture is also effective as a potential antiestrogenic, therapeutic agent that prevents estrogen-stimulated tumorigenesis and displays a differential pattern of gene expression from tamoxifen.
View Article and Find Full Text PDFAdult human mesenchymal stem cells (hMSCs) have been shown to home to sites of breast cancer and integrate into the tumor stroma. We demonstrate here the effect of hMSCs on primary breast tumor growth and the progression of these tumors to hormone independence. Co-injection of bone marrow-derived hMSCs enhances primary tumor growth of the estrogen receptor-positive, hormone-dependent breast carcinoma cell line MCF-7 in the presence or absence of estrogen in SCID/beige mice.
View Article and Find Full Text PDFBackground: In their safety evaluations of bisphenol A (BPA), the U.S. Food and Drug Administration (FDA) and a counterpart in Europe, the European Food Safety Authority (EFSA), have given special prominence to two industry-funded studies that adhered to standards defined by Good Laboratory Practices (GLP).
View Article and Find Full Text PDFUterine leiomyomas, benign uterine smooth muscle tumors that affect 30% of reproductive-aged women, are a significant health concern. The initiation event for these tumors is unclear, but 17beta-estradiol (E2) is an established promoter of leiomyoma growth. E2 not only alters transcription of E2-regulated genes but also can rapidly activate signaling pathways.
View Article and Find Full Text PDFThe primary induced isoflavones in soybean, the glyceollins, have been shown to be potent estrogen antagonists in vitro and in vivo. The discovery of the glyceollins' ability to inhibit cancer cell proliferation has led to the analysis of estrogenic activities of other induced isoflavones. In this study, we investigated a novel isoflavone, glycinol, a precursor to glyceollin that is produced in elicited soy.
View Article and Find Full Text PDF