Publications by authors named "John A McCauley"

A novel, highly diastereoselective, and metal-free synthesis of multisubstituted piperidines via an S1 approach is reported in this study. The method allows for the preparation of highly functionalized compounds with exceptional diastereomeric selectivities and consistently reproducible yields. These compounds are of significant interest due to their remarkable biological activities toward influenza endonuclease.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to be a global threat due to its ability to evolve and generate new subvariants, leading to new waves of infection. Additionally, other coronaviruses like Middle East respiratory syndrome coronavirus (MERS-CoV, formerly known as hCoV-EMC), which first emerged in 2012, persist and continue to present a threat of severe illness to humans. The continued identification of novel coronaviruses, coupled with the potential for genetic recombination between different strains, raises the possibility of new coronavirus clades of global concern emerging.

View Article and Find Full Text PDF

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor.

View Article and Find Full Text PDF

Drug resistance to first-line antimalarials-including artemisinin-is increasing, resulting in a critical need for the discovery of new agents with novel mechanisms of action. In collaboration with the Walter and Eliza Hall Institute and with funding from the Wellcome Trust, a phenotypic screen of Merck's aspartyl protease inhibitor library identified a series of plasmepsin X (PMX) hits that were more potent than chloroquine. Inspired by a PMX homology model, efforts to optimize the potency resulted in the discovery of leads that, in addition to potently inhibiting PMX, also inhibit another essential aspartic protease, plasmepsin IX (PMIX).

View Article and Find Full Text PDF
Article Synopsis
  • PMIX and PMX are important proteases in Plasmodium spp. that facilitate essential processes like egress and invasion in their lifecycle.
  • WM4 and WM382 are inhibitors of these proteases, with WM4 specifically targeting PMX and WM382 acting on both PMIX and PMX.
  • Research into the binding interactions and substrate specificity of these inhibitors helps clarify their mechanism, providing insights that could aid in developing new treatments.
View Article and Find Full Text PDF

Artemisin combination therapy (ACT) is the main treatment option for malaria, which is caused by the intracellular parasite Plasmodium. However, increased resistance to ACT highlights the importance of finding new drugs. Recently, the aspartic proteases Plasmepsin IX and X (PMIX and PMX) were identified as promising drug targets.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new series of positive allosteric modulators (PAMs) targeting muscarinic acetylcholine receptor 4, focusing on 2,3-disubstituted and 2,3,6-trisubstituted compounds.
  • Through iterative libraries, they identified effective substituents that enhanced the potency of these compounds, leading to a selective and brain-penetrant candidate, compound 24.
  • Preclinical tests show that compound 24 can reduce amphetamine-induced hyperactivity in rats and mice, with fewer side effects compared to a nonselective agonist, indicating its potential as a safer treatment option for psychosis.
View Article and Find Full Text PDF

Using the HIV-1 protease binding mode of and as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to .

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is a major health issue around the world and HCV NS3/4a protease inhibitors have been the focus of intensive research for the past 20 years. From the first identification of substrate-derived peptide inhibitors to the complex, macrocyclic compounds, including paritaprevir and grazoprevir, that are currently available, the field has used structure-based design to confront the issues of potency, resistance and pharmacokinetics. Numerous breakthrough structures from a multitude of companies have led to compounds that are now key components of combination therapies with cure rates of >90%.

View Article and Find Full Text PDF

A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

View Article and Find Full Text PDF

Familial Parkinson's disease cases have recently been associated with the leucine rich repeat kinase 2 (LRRK2) gene. It has been hypothesized that inhibition of the LRRK2 protein may have the potential to alter disease pathogenesis. A dihydrobenzothiophene series of potent, selective, orally bioavailable LRRK2 inhibitors were identified from a high-throughput screen of the internal Merck sample collection.

View Article and Find Full Text PDF

The preclinical pharmacodynamic and pharmacokinetic properties of 4-methylbenzyl (3S, 4R)-3-fluoro-4-[(Pyrimidin-2-ylamino) methyl] piperidine-1-carboxylate (CERC-301), an orally bioavailable selective N-methyl-D-aspartate (NMDA) receptor subunit 2B (GluN2B) antagonist, were characterized to develop a translational approach based on receptor occupancy (RO) to guide CERC-301 dose selection in clinical trials of major depressive disorder. CERC-301 demonstrated high-binding affinity (K i, 8.1 nmol L(-1)) specific to GluN2B with an IC 50 of 3.

View Article and Find Full Text PDF

With the goal of identifying inhibitors of hepatitis C virus (HCV) NS3/4a protease that are potent against a wide range of genotypes and clinically relevant mutant viruses, several subseries of macrocycles were investigated based on observations made during the discovery of MK-5172. Quinazolinone-containing macrocycles were identified as promising leads, and optimization for superior cross-genotype and mutant enzyme potency as well as rat liver and plasma concentrations following oral dosing, led to the development of MK-2748. Additional investigation of a series of bis-macrocycles containing a fused 18- and 15-membered ring system were also optimized for the same properties, leading to the discovery of MK-6325.

View Article and Find Full Text PDF

We have previously reported the discovery of our P2-P4 macrocyclic HCV NS3/4a protease inhibitor MK-5172, which in combination with the NS5a inhibitor MK-8742 recently received a breakthrough therapy designation from the US FDA for treatment of chronic HCV infection. Our goal for the next generation NS3/4a inhibitor was to achieve pan-genotypic activity while retaining the pharmacokinetic profile of MK-5172. One of the areas for follow-up investigation involved replacement of the quinoxaline moiety in MK-5172 with a quinoline and studying the effect of substitution at 4-position of the quinoline.

View Article and Find Full Text PDF

The NS5A protein plays a critical role in the replication of HCV and has been the focus of numerous research efforts over the past few years. NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays, making them attractive components for inclusion in all oral combination regimens. Early work in the NS5A arena led to the discovery of our first clinical candidate, MK-4882 [2-((S)-pyrrolidin-2-yl)-5-(2-(4-(5-((S)-pyrrolidin-2-yl)-1H-imidazol-2-yl)phenyl)benzofuran-5-yl)-1H-imidazole].

View Article and Find Full Text PDF

A series of macrocyclic compounds containing a cyclic constraint in the P2-P4 linker region have been discovered and shown to exhibit excellent HCV NS3/4a genotype 3a and genotype 1b R155K, A156T, A156V, and D168V mutant activity while maintaining high rat liver exposure. The effect of the constraint is most dramatic against gt 1b A156 mutants where ~20-fold improvements in potency are achieved by introduction of a variety of ring systems into the P2-P4 linker.

View Article and Find Full Text PDF

A series of macrocyclic compounds containing 2-substituted-quinoline moieties have been discovered and shown to exhibit excellent HCV NS3/4a genotype 3a and genotype 1b R155K mutant activity while maintaining the high rat liver exposure. Cyclization of the 2-substituted quinoline substituent led to a series of tricyclic P2 compounds which also display superb gt3a potency.

View Article and Find Full Text PDF

Genes conferring mercury resistance have been investigated in a variety of bacteria and archaea but not in bacteria of the phylum Bacteroidetes, despite their importance in many environments. We found, however, that a marine gliding Bacteroidetes species, Tenacibaculum discolor, was the predominant mercury-resistant bacterial taxon cultured from a salt marsh fertilized with mercury-contaminated sewage sludge. Here we report characterization of the mercuric reductase and the narrow-spectrum mercury resistance (mer) operon from one of these strains - T.

View Article and Find Full Text PDF

HCV NS3/4a protease inhibitors are proven therapeutic agents against chronic hepatitis C virus infection, with boceprevir and telaprevir having recently received regulatory approval as add-on therapy to pegylated interferon/ribavirin for patients harboring genotype 1 infections. Overcoming antiviral resistance, broad genotype coverage, and a convenient dosing regimen are important attributes for future agents to be used in combinations without interferon. In this communication, we report the preclinical profile of MK-5172, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor currently in clinical development.

View Article and Find Full Text PDF

A new class of HCV NS3/4a protease inhibitors containing a P2 to P4 macrocyclic constraint was designed using a molecular modeling-derived strategy. Building on the profile of previous clinical compounds and exploring the P2 and linker regions of the series allowed for optimization of broad genotype and mutant enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 15 (MK-5172), which is active against genotype 1-3 NS3/4a and clinically relevant mutant enzymes and has good plasma exposure and excellent liver exposure in multiple species.

View Article and Find Full Text PDF

The discovery of MK-1220 is reported along with the development of a series of HCV NS3/4A protease inhibitors containing a P2 to P4 macrocyclic constraint with improved preclinical pharmacokinetics. Optimization of the P2 heterocycle substitution pattern as well as the P3 amino acid led to compounds with greatly improved plasma exposure following oral dosing in both rats and dogs while maintaining excellent enzyme potency and cellular activity. These studies led to the identification of MK-1220.

View Article and Find Full Text PDF

A new class of HCV NS3/4a protease inhibitors which contain a P2 to P4 macrocyclic constraint was designed using a molecular-modeling derived strategy. Exploration of the P2 heterocyclic region, the P2 to P4 linker, and the P1 side chain of this class of compounds via a modular synthetic strategy allowed for the optimization of enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 35b (vaniprevir, MK-7009), which is active against both the genotype 1 and genotype 2 NS3/4a protease enzymes and has good plasma exposure and excellent liver exposure in multiple species.

View Article and Find Full Text PDF

The administration of hepatitis C virus (HCV) NS3/4A protease inhibitors to patients with chronic HCV infections has demonstrated that they have dramatic antiviral effects and that compounds acting via this mechanism are likely to form a key component of future anti-HCV therapy. We report here on the preclinical profile of MK-7009, an inhibitor of genotype 1a and 1b proteases at subnanomolar concentrations with modestly shifted potency against genotype 2a and 2b proteases at low nanomolar concentrations. Potent activity was also observed in a cell-based HCV replicon assay in the presence of added human serum (50%).

View Article and Find Full Text PDF

A novel series of annulated tricyclic compounds was synthesized and evaluated as NMDA/NR2B antagonists. Structure-activity development was directed towards in vitro optimization of NR2B activity and selectivity over the hERG K(+) channel. Preferred compounds were subsequently evaluated for selectivity in an alpha(1)-adrenergic receptor binding counter-screen and a cell-based assay of NR2B activity.

View Article and Find Full Text PDF