Electron spin resonance pulsed dipolar spectroscopy (PDS) has become popular in protein 3D structure analysis. PDS studies yield distance distributions between a pair or multiple pairs of spin probes attached to protein molecules, which can be used directly in structural studies or as constraints in theoretical predictions. Double-quantum coherence (DQC) is a highly sensitive and accurate PDS technique to study protein structures in the solid state and under physiologically relevant conditions.
View Article and Find Full Text PDFLandau-Zener-Stückelberg-Majorana (LZSM) transitions occur between quantum states when parameters in the system's Hamiltonian are varied continuously and rapidly. In magnetic resonance, losses in adiabatic rapid passage can be understood using the physics of LZSM transitions. Most treatments of LZSM transitions ignore the T dephasing of coherences, however.
View Article and Find Full Text PDFSimulation has become an essential component of designing and developing scientific experiments. The conventional procedural approach to coding simulations of complex experiments is often error-prone, hard to interpret, and inflexible, making it hard to incorporate changes such as algorithm updates, experimental protocol modifications, and looping over experimental parameters. We present mmodel, a Python framework designed to accelerate the writing of experimental simulation packages.
View Article and Find Full Text PDFThe sensitivity of magnetic resonance force microscopy (MRFM) is limited by surface noise. Coating a thin-film polymer sample with metal has been shown to decrease, by orders of magnitude, sample-related force noise and frequency noise in MRFM experiments. Using both MRFM and inductively detected measurements of electron-spin resonance, we show that thermally evaporating a 12 nm gold layer on a 40 nm nitroxide-doped polystyrene film inactivates the nitroxide spin labels to a depth of 20 nm, making single-spin measurements difficult or impossible.
View Article and Find Full Text PDFAligning a microcantilever to an area of interest on a sample is a critical step in many scanning probe microscopy experiments, particularly those carried out on devices and rare, precious samples. We report a series of protocols that rapidly and reproducibly align a high-compliance microcantilever to a <10 μm sample feature under high vacuum and at cryogenic temperatures. The first set of protocols, applicable to a cantilever oscillating parallel to the sample surface, involve monitoring the cantilever resonance frequency while laterally scanning the tip to map the sample substrate through electrostatic interactions of the substrate with the cantilever.
View Article and Find Full Text PDFHow light is converted to electricity in blends of organic donor and acceptor molecules is an unsettled question, partly because the spatial heterogeneity present in these blends makes them challenging to characterize. Although scanned-probe measurements have provided crucially important microscopic insights into charge generation and transport in these blends, achieving the subnanosecond time resolution needed to directly observe the fate of photogenerated charges has proven difficult. We use a charged microcantilever as a gated mechanical integrator to record photocapacitance indirectly by measuring the accumulated change in cantilever phase as a function of the time delay between precisely synchronized voltage and light pulses.
View Article and Find Full Text PDFCorrection for 'Dynamic nuclear polarization in a magnetic resonance force microscope experiment' by Corinne E. Isaac et al., Phys.
View Article and Find Full Text PDFWe report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect.
View Article and Find Full Text PDFAn electric force microscope employs a charged atomic force microscope probe in vacuum to measure fluctuating electric forces above the sample surface generated by dynamics of molecules and charge carriers. We present a theoretical description of two observables in electric force microscopy of a semiconductor: the spectral density of cantilever frequency fluctuations (jitter), which are associated with low-frequency dynamics in the sample, and the coefficient of noncontact friction, induced by higher-frequency motions. The treatment is classical-mechanical, based on linear response theory and classical electrodynamics of diffusing charges in a dielectric continuum.
View Article and Find Full Text PDFMagnetic resonance force microscopy (MRFM), which combines magnetic resonance imaging with scanning probe microscopy together, is capable of performing ultra-sensitive detection of spin magnetization. In an attempt to observe dynamic nuclear polarization (DNP) in an MRFM experiment, which could possibly further improve its sensitivity towards a single proton spin, a film of perdeuterated polystyrene doped with a nitroxide electron-spin probe was prepared. A high-compliance cantilever with a 4 m diameter magnetic tip was brought near the film at a temperature of 7.
View Article and Find Full Text PDFWe introduce a spin-modulation protocol for force-gradient detection of magnetic resonance that enables the real-time readout of longitudinal magnetization in an electron spin resonance experiment involving fast-relaxing spins. We applied this method to observe a prompt change in longitudinal magnetization following the microwave irradiation of a nitroxide-doped perdeuterated polystyrene film having an electron spin-lattice relaxation time of [Formula: see text]. The protocol allowed us to discover a large, long-lived cantilever frequency shift.
View Article and Find Full Text PDFDetection of magnetic resonance as a force between a magnetic tip and nuclear spins has previously been shown to enable sub-10 nm resolution 1H imaging. Maximizing the spin force in such a magnetic resonance force microscopy (MRFM) experiment demands a high field gradient. In order to study a wide range of samples, it is equally desirable to locate the magnetic tip on the force sensor.
View Article and Find Full Text PDFWe present spatially resolved photovoltage spectra of a bulk heterojunction solar cell film composed of phase-separated poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB) polymers prepared on ITO/PEDOT:PSS and aluminum substrates. Over both PFB- and F8BT-rich domains, the photopotential spectra were found to be proportional to a linear combination of the polymers' absorption spectra. Charge trapping in the film was studied using photopotential fluctuation spectroscopy, in which low-frequency photoinduced electrostatic potential fluctuations were measured by observing noise in the oscillation frequency of a nearby charged atomic force microscope cantilever.
View Article and Find Full Text PDFIn electric force microscopy, a charged atomic force microscope tip in vacuum senses a fluctuating electrical force generated by the sample. Such measurements can in principle probe electrical noise generated by moving charge carriers in an organic semiconductor. We present a theory of cantilever frequency fluctuations in electric force microscopy, driven by coupled charge carrier dynamics and dielectric fluctuations.
View Article and Find Full Text PDFWe measure the spin-lattice relaxation time as a function of sample temperature in GaAs in a real-time single-shot inversion recovery experiment using spin force gradients acting on a magnetic tipped cantilever. After inverting Ga spins localized near the magnet with a single 20 ms adiabatic rapid passage sweep, the spins' magnetization recovery was passively tracked by recording the cantilever's frequency change, which is proportional to the longitudinal component of the spins' magnetization. The cantilever's frequency was recorded for a time 3*T for sample temperatures ranging from 4.
View Article and Find Full Text PDFIn-plane to out-of-plane magnetization switching in a single nickel nanorod affixed to an attonewton-sensitivity cantilever was studied at cryogenic temperatures. We observe multiple sharp, simultaneous transitions in cantilever frequency, dissipation, and frequency jitter associated with magnetic switching through distinct intermediate states. These findings suggest a new route for detecting magnetic fields at the nanoscale.
View Article and Find Full Text PDFPhys Rev B Condens Matter Mater Phys
April 2012
We report a unified framework describing all existing protocols for spin manipulation and signal creation in frequency-modulation magnetic resonance force microscopy using classical perturbation theory. The framework is well suited for studying the dependence of the frequency shift on the cantilever amplitude via numerical simulation. We demonstrate the formalism by recovering an exact result for a single spin signal and by simulating, for the first time as a function of cantilever amplitude, the frequency shift due to a volume of noninteracting spins inverted by an adiabatic rapid passage.
View Article and Find Full Text PDFWe present a systematic study of the frequency noise experienced by a charged atomic force microscope cantilever due to thermal dielectric fluctuations in a thin-film sample of poly(vinyl acetate). Here, the tip of the commercial atomic force microscope cantilever oscillates in the conventional direction, normal to the surface of the film, complementing our previous studies of dielectric fluctuations carried out using an ultrasensitive custom-fabricated cantilever oscillating parallel to the film surface. We show that frequency noise induced by mechanical vibrations can be distinguished from frequency noise resulting from thermal dielectric fluctuations by the dependence on applied voltage and tip-sample separation, allowing molecular information to be unambiguously extracted.
View Article and Find Full Text PDFJ Vac Sci Technol B Nanotechnol Microelectron
May 2011
The authors report a method for rapidly prototyping attonewton-sensitivity cantilevers with custom-fabricated tips and illustrate the method by preparing tips consisting of a magnetic nanorod overhanging the leading edge of the cantilevers. Micron-long nickel nanorods with widths of 120-220 nm were fabricated on silicon chips by electron beam lithography, deposition, and lift-off. Each silicon chip, with its integral nanomagnet, was attached serially to a custom-fabricated attonewton-sensitivity cantilever using focused ion beam manipulation.
View Article and Find Full Text PDFSpatial maps of topography and trapped charge are acquired for polycrystalline pentacene thin-film transistors using electric and atomic force microscopy. In regions of trapped charge, the rate of trap clearing is studied as a function of the wavelength of incident radiation.
View Article and Find Full Text PDFWe have batch-fabricated cantilevers with ∼100 nm diameter nickel nanorod tips and force sensitivities of a few attonewtons at 4.2 K. The magnetic nanorods were engineered to overhang the leading edge of the cantilever, and consequently the cantilevers experience what we believe is the lowest surface noise ever achieved in a scanned probe experiment.
View Article and Find Full Text PDFWe introduce and demonstrate a method of measuring small force gradients acting on a harmonic oscillator in which the force-gradient signal of interest is used to parametrically up-convert a forced oscillation below resonance into an amplitude signal at the oscillator's resonance frequency. The approach, which we demonstrate in a mechanically detected electron spin resonance experiment, allows the force-gradient signal to evade detector frequency noise by converting a slowly modulated frequency signal into an amplitude signal.
View Article and Find Full Text PDFInternanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2009
We report an approach that extends the applicability of ultrasensitive force-gradient detection of magnetic resonance to samples with spin-lattice relaxation times (T (1)) as short as a single cantilever period. To demonstrate the generality of the approach, which relies on detecting either cantilever frequency or phase, we used it to detect electron spin resonance from a T (1) = 1 ms nitroxide spin probe in a thin film at 4.2 K and 0.
View Article and Find Full Text PDF