Publications by authors named "John A M Ramshaw"

The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content.

View Article and Find Full Text PDF

Collagens from a wide array of animals have been explored for use in tissue engineering in an effort to replicate the native extracellular environment of the body. Marine-derived biomaterials offer promise over their conventional mammalian counterparts due to lower risk of disease transfer as well as being compatible with more religious and ethical groups within society. Here, collagen type I derived from a marine source (, Blue Grenadier) is compared with the more established porcine collagen type I and its potential in tissue engineering examined.

View Article and Find Full Text PDF

As the most abundant protein in the extracellular matrix, collagen has become widely studied in the fields of tissue engineering and regenerative medicine. Of the various collagen types, collagen type I is the most commonly utilised in laboratory studies. In tissues, collagen type I forms into fibrils that provide an extended fibrillar network.

View Article and Find Full Text PDF

Hard tissue engineering has evolved over the past decades, with multiple approaches being explored and developed. Despite the rapid development and success of advanced 3D cell culture, 3D printing technologies and material developments, a gold standard approach to engineering and regenerating hard tissue substitutes such as bone, dentin and cementum, has not yet been realised. One such strategy that differs from conventional regenerative medicine approach of other tissues, is the in vitro mineralisation of collagen templates in the absence of cells.

View Article and Find Full Text PDF

Mineralization of bone is a dynamic process, involving a complex interplay between cells, secreted macromolecules, signaling pathways, and enzymatic reactions; the dysregulation of bone mineralization may lead to serious skeletal disorders, including hypophosphatemic rickets, osteoporosis, and rheumatoid arthritis. Very few studies have reported the role of osteocytes - the most abundant bone cells in the skeletal system and the major orchestrators of bone remodeling in bone mineralization, which is owed to their nature of being deeply embedded in the mineralized bone matrix. The Wnt/β-catenin signaling pathway is actively involved in various life processes including osteogenesis; however, the role of Wnt/β-catenin signaling in the terminal mineralization of bone, especially in the regulation of osteocytes, is largely unknown.

View Article and Find Full Text PDF

Bacterial collagen-like proteins differ from vertebrate collagens in that they do not contain hydroxyproline, which is seen as a characteristic of the vertebrate collagens, and which provides a significant contribution to the stability of the collagen triple-helix at body temperature. Despite this difference, the bacterial collagens are stable at around body temperature through inclusion of other stabilising sequence elements. Another difference is the lack of aggregation, and certain vertebrate collagen binding domains that can be introduced into the bacterial sequence lack full function when hydroxyproline is absent.

View Article and Find Full Text PDF

Glutaraldehyde is a well-recognised reagent for crosslinking and stabilising collagens and other protein-based materials, including gelatine. In some cases, however, the use of solutions can disrupt the structure of the material, for example, by causing rapid dispersion or distortions from surface interactions. An alternative approach that has been explored in a number of individual cases is the use of glutaraldehyde vapour.

View Article and Find Full Text PDF

There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E.

View Article and Find Full Text PDF

Unlabelled: Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as Streptococcal collagen-like 2 (Scl2) proteins can be employed to incorporate multiple specific bioactive and biodegradable peptide motifs into a single construct. Here, we first modified the backbone of Scl2 with glycosaminoglycan-binding peptides and cross-linked the modified Scl2 into hydrogels via matrix metalloproteinase 7 (MMP7)-cleavable or non-cleavable scrambled peptides.

View Article and Find Full Text PDF

Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved.

View Article and Find Full Text PDF

Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as "blank slate" collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds.

View Article and Find Full Text PDF

Tissue engineering strategies for repairing and regenerating articular cartilage face critical challenges to recapitulate the dynamic and complex biochemical microenvironment of native tissues. One approach to mimic the biochemical complexity of articular cartilage is through the use of recombinant bacterial collagens as they provide a well-defined biological 'blank template' that can be modified to incorporate bioactive and biodegradable peptide sequences within a precisely defined three-dimensional system. We customized the backbone of a Streptococcal collagen-like 2 (Scl2) protein with heparin-binding, integrin-binding, and hyaluronic acid-binding peptide sequences previously shown to modulate chondrogenesis and then cross-linked the recombinant Scl2 protein with a combination of matrix metalloproteinase 7 (MMP7)- and aggrecanase (ADAMTS4)-cleavable peptides at varying ratios to form biodegradable hydrogels with degradation characteristics matching the temporal expression pattern of these enzymes in human mesenchymal stem cells (hMSCs) during chondrogenesis.

View Article and Find Full Text PDF

A range of non-animal collagens has been described, derived from bacterial species, which form stable triple-helical structures without the need for secondary modification to include hydroxyproline in the sequence. The non-animal collagens studied to date are typically smaller than animal interstitial collagens, around one quarter the length and do not pack into large fibrillar aggregates like those that are formed by the major animal interstitial collagens. A consequence of this for biomedical products is that fabricated items, such as collagen sponges, are not as mechanically and dimensionally stable as those of animal collagens.

View Article and Find Full Text PDF
Biomedical applications of collagens.

J Biomed Mater Res B Appl Biomater

May 2016

Collagen-based biomedical materials have developed into important, clinically effective materials used in a range of devices that have gained wide acceptance. These devices come with collagen in various formats, including those based on stabilized natural tissues, those that are based on extracted and purified collagens, and designed composite, biosynthetic materials. Further knowledge on the structure and function of collagens has led to on-going developments and improvements.

View Article and Find Full Text PDF

Composite biomaterials provide alternative materials that improve on the properties of the individual components and can be used to replace or restore damaged or diseased tissues. Typically, a composite biomaterial consists of a matrix, often a polymer, with one or more fillers that can be made up of particles, sheets or fibres. The polymer matrix can be chosen from a wide range of compositions and can be fabricated easily and rapidly into complex shapes and structures.

View Article and Find Full Text PDF

Regenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable moieties into a single construct. We modified a Streptococcal collagen-like 2 protein with hyaluronic acid (HA) or chondroitin sulfate (CS)-binding peptides and then cross-linked with a matrix metalloproteinase 7 (MMP7)-sensitive peptide to form biodegradable hydrogels.

View Article and Find Full Text PDF

The collagen like domain Scl2 from Streptococcus pyogenes has been proposed as a potential biomedical material. It is non-cytotoxic and non-immunogenic and can be prepared in good yield in fermentation. The Scl2 collagen domain is about a quarter of the length, 234 residues, of the main collagen type, mammalian type I collagen (1014 residues) that is currently used in biomedical devices.

View Article and Find Full Text PDF

The present study has evaluated a commercial pericardial material for its capacity to assist as a natural extracellular matrix (ECM) patch for the delivery and retention of mesenchymal stem cells for cardiac repair. The repair of cardiac tissue with cells delivered by an appropriate bioscaffold is expected to offer a superior, long-lasting treatment strategy. The present material, CardioCel®, is based on acellular pericardium that has been stabilized by treatments, including a low concentration of glutaraldehyde, that eliminate calcification after implantation.

View Article and Find Full Text PDF

Pelvic organ prolapse is a major hidden burden affecting almost one in four women. It is treated by reconstructive surgery, often augmented with synthetic mesh. To overcome the growing concerns of using current synthetic meshes coupled with the high risk of reoperation, a tissue engineering strategy has been developed, adopting a novel source of mesenchymal stem cells.

View Article and Find Full Text PDF

Cuvierian tubules are expelled as a defence mechanism against predators by various species within the family Holothuridae. When the tubules are expelled, they become sticky almost immediately and ensnare the predator. The mechanism of this rapid adhesion is not clear, but proteins on the surface of the expelled tubules are widely believed to be involved.

View Article and Find Full Text PDF

Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens.

View Article and Find Full Text PDF

Objective: To undertake a comprehensive analysis of the biochemical tissue composition and passive biomechanical properties of ovine vagina and relate this to the histo-architecture at different reproductive stages as part of the establishment of a large preclinical animal model for evaluating regenerative medicine approaches for surgical treatment of pelvic organ prolapse.

Methods: Vaginal tissue was collected from virgin (n = 3), parous (n = 6) and pregnant sheep (n = 6; mean gestation; 132 d; term = 145 d). Tissue histology was analyzed using H+E and Masson's Trichrome staining.

View Article and Find Full Text PDF

A large number of collagen-like proteins have been identified in bacteria during the past 10years, principally from analysis of genome databases. These bacterial collagens share the distinctive Gly-Xaa-Yaa repeating amino acid sequence of animal collagens which underlies their unique triple-helical structure. A number of the bacterial collagens have been expressed in Escherichia coli, and they all adopt a triple-helix conformation.

View Article and Find Full Text PDF

Recently, a different class of collagen-like molecules has been identified in numerous bacteria. Initial studies have shown that these collagens are readily produced in Escherichia coli and they have been isolated and purified by various small-scale chromatography approaches. These collagens are non-cytotoxic, are non-immunogenic, and can be produced in much higher yields than mammalian collagens, making them potential new collagens for biomedical materials.

View Article and Find Full Text PDF

The deposition of new collagen in association with a medical implant has been studied using expanded polytetrafluoroethylene vascular replacement samples implanted subcutaneously in sheep, for up to 28 days. New type I collagen mRNA synthesis was followed by in situ hybridization, while the accumulation of new collagen types III, V, VI, XII, and XIV was followed by immunohistochemistry. All the collagen detected in the pores of the implant were newly deposited at various times after implantation and were not due to any pre-existing dermal collagen that may have been present around the implant.

View Article and Find Full Text PDF