Publications by authors named "John A Kemp"

Current treatments for progressive neurodegenerative disorders characterized by cognitive impairment either have limited efficacy or are lacking altogether. SDI-118 is a small molecule which modulates the activity of synaptic vesicle glycoprotein 2A (SV2A) in the brain and shows cognitive enhancing effects in a range of animal models of cognitive deficit. This first-in-human study evaluated safety, tolerability, and pharmacokinetics/pharmacodynamics of SDI-118 in single ascending oral doses up to 80 mg administered to 32 healthy male subjects.

View Article and Find Full Text PDF

The tau spreading hypothesis provides rationale for passive immunization with an anti-tau monoclonal antibody to block seeding by extracellular tau aggregates as a disease-modifying strategy for the treatment of Alzheimer's disease (AD) and potentially other tauopathies. As the biochemical and biophysical properties of the tau species responsible for the spatio-temporal sequences of seeding events are poorly defined, it is not yet clear which epitope is preferred for obtaining optimal therapeutic efficacy. Our internal tau antibody collection has been generated by immunizations with different tau species: aggregated- and non-aggregated tau and human postmortem AD brain-derived tau fibrils.

View Article and Find Full Text PDF

Synaptic dysfunction is a well-documented manifestation in animal models of Alzheimer's disease pathology. In this context, numerous studies have documented reduction in the functionality of synapses in various models. In addition, recent research has shed more light on increased excitability and its link to seizures and seizure-like activities in AD patients as well as in mouse models.

View Article and Find Full Text PDF

Neurofibrillary tangles composed of hyperphosphorylated fibrillized tau are found in numerous tauopathies including Alzheimer's disease. Increasing evidence suggests that tau pathology can be transmitted from cell-to-cell; however the mechanisms involved in the initiation of tau fibrillization and spreading of disease linked to progression of tau pathology are poorly understood. We show here that intracerebral injections of preformed synthetic tau fibrils into the hippocampus or frontal cortex of young tau transgenic mice expressing mutant human P301L tau induces tau hyperphosphorylation and aggregation around the site of injection, as well as a time-dependent propagation of tau pathology to interconnected brain areas distant from the injection site.

View Article and Find Full Text PDF

Background: Transgenic mice expressing mutated amyloid precursor protein (APP) and presenilin (PS)-1 or -2 have been successfully used to model cerebral beta-amyloidosis, one of the characteristic hallmarks of Alzheimer's disease (AD) pathology. However, the use of many transgenic lines is limited by premature death, low breeding efficiencies and late onset and high inter-animal variability of the pathology, creating a need for improved animal models. Here we describe the detailed characterization of a new homozygous double-transgenic mouse line that addresses most of these issues.

View Article and Find Full Text PDF

The asymmetric synthesis and receptor pharmacology of (1S,2R,3R,5R,6S)-2-amino-3-Hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (+)-9 (HYDIA) and a few of its O-alkylated derivatives are described.

View Article and Find Full Text PDF

Glutamate- and GABA-releasing neurons form the basis for neurotransmission in the mammalian central nervous system (CNS). The co-ordination of these excitatory and inhibitory systems, together with intrinsic voltage-gated ion channels and G-protein-coupled receptor modulation, provides the diverse neuronal firing patterns, network activity and synaptic plasticity that are required for the complexity of CNS function. Virtually all of the known molecular components of the gamma-aminobutyric acid (GABA) and glutamate neurotransmitter systems have been considered as potential therapeutic targets.

View Article and Find Full Text PDF

Rationale: We previously reported that the NR2B subunit-selective N-methyl-D-aspartate (NMDA) antagonist Ro 63-1908 produced a marked deficit in response control in the five-choice serial reaction time task (5-CSRTT).

Objectives: The present studies were designed to investigate this further by studying the NR2B NMDA antagonists, ifenprodil, traxoprodil (CP101,606), Ro 25-6981 as well as Ro 63-1908 in this test.

Methods: Following training in the 5-CSRTT, separate groups of rats were either tested under (1) standard test conditions [5 s inter-trial interval (ITI), 0.

View Article and Find Full Text PDF

Rationale: L: -Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS) and mediates its actions via activation of both ionotropic and metabotropic receptor families. The development of selective ligands, including competitive agonists and antagonists and positive and negative allosteric modulators, has enabled investigation of the functional roles of glutamate receptor family members.

Objective: In this review we describe the subunit structure and composition of the ionotropic and metabotropic glutamate receptors and discuss their pharmacology, particularly with respect to selective tools useful for investigation of their function in the CNS.

View Article and Find Full Text PDF

Human C-reactive protein (CRP), the classic acute phase plasma protein, increases in concentration after myocardial infarction and stroke. Human CRP binds to ligands exposed in damaged tissue and can then activate complement and its proinflammatory functions. In contrast, rat CRP, which binds to similar ligands, does not activate complement.

View Article and Find Full Text PDF

Atrophy of the medial temporal lobes, including the glutamatergic cortical-hippocampal circuitry, is an early event in Alzheimer's disease (AD) and probably contributes to the characteristic short-term mnemonic decline. Pharmacological strategies directly targeted to ameliorating this functional decline may represent a novel approach for the symptomatic treatment of AD. Presynaptic group II metabotropic glutamate receptors (i.

View Article and Find Full Text PDF

N-methyl-D-aspartate (NMDA) receptor antagonists have antiakinetic and antidyskinetic effects in animals models of Parkinson's disease (PD). However, non-selective inhibition of NMDA receptors throughout the central nervous system may result in undesired effects such as ataxia and psychosis. We therefore studied Ro 25-6981, an activity-dependent antagonist of NMDA receptors containing the NR2B subunit which are predominantly expressed in the striatum.

View Article and Find Full Text PDF

Rationale: Glutamate signalling through the N-methyl-D-aspartate (NMDA) receptor is of critical importance for normal central nervous system (CNS) function, as indicated by the marked behavioural disturbances produced by non-subtype selective NMDA antagonists such as dizocilpine (MK-801).

Objective: The present studies were designed to investigate the involvement of the two major NMDA receptor subunits in the central nervous system, i.e.

View Article and Find Full Text PDF

N-Methyl-d-aspartate (NMDA) receptors play key roles in both physiological processes, particularly synaptic plasticity, and in neuropathological states such as epilepsy and acute neurodegeneration. R-(R*,S*)-alpha-(4-Hydroxyphenyl)-beta-methyl-4-(phenyl-methyl)-1-piperidine propanol (RO 25-6981), is a high-affinity and selective blocker of NMDA receptors containing the NR2B subunit. Using site-directed mutagenesis, [3H]RO 25-6981 binding, Xenopus oocyte voltage-clamp recordings, and molecular modeling, we have identified several critical residues involved in the RO 25-6981 binding site within the N-terminal LIVBP-like domain of the human NR2B subunit.

View Article and Find Full Text PDF

Transgenic mice, expressing mutant beta-amyloid precursor proteins (betaAPPs), have lead to a better understanding of the pathophysiological processes in Alzheimer's disease (AD). In many of these models, however, the temporal development of cognitive decline and the relationship to Abeta deposition and inflammation are unclear. We now report a novel transgenic mouse line, PS2APP (PS2N141I x APPswe), which develops a severe cerebral amyloidosis in discrete brain regions, and present a cross-sectional analysis of these mice at 4, 8, 12, and 16 months of age.

View Article and Find Full Text PDF

The relevance of the mitochondrial permeability transition pore (PTP) in Ca2+ homeostasis and cell death has gained wide attention. Yet, despite detailed functional characterization, the structure of this channel remains elusive. Here we report on a new class of inhibitors of the PTP and on the identification of their molecular target.

View Article and Find Full Text PDF

The G-protein coupled metabotropic glutamate receptor mGlu5 plays a pivotal role as a modulator of synaptic plasticity, ion channel activity and excitotoxicity. Two splice variants, hmGlu5a and -5b have been reported previously. During screening of a human brain cDNA library for hmGlu5a, we identified a novel variant (hmGlu5d) generated by alternative splicing at the C-terminal domain.

View Article and Find Full Text PDF

Since the mid 1980s, there has been a great deal of enthusiasm within both academia and industry about the therapeutic potential of drugs targeting the NMDA subtype of glutamate receptors. That early promise is just beginning to translate into approvable drugs. Here we review the reasons for this slow progress and critically assess the future prospects for drugs that act on NMDA receptor pathways, including potential treatments for some major disorders such as stroke and Alzheimer's disease, for which effective therapies are still lacking.

View Article and Find Full Text PDF

Group II metabotropic glutamate (mGlu) receptors can act as presynaptic autoinhibitory receptors at perforant path inputs to the hippocampus under conditions of high frequency synaptic activation. We have used mGlu2 -/- mice to examine the relative roles of mGlu2 and mGlu3 in the regulation of perforant path synaptic transmission mediated by both the selective group II receptor agonist, DCG-IV, and by synaptically released glutamate. Field excitatory postsynaptic potentials evoked by stimulation of either the perforant path inputs to the dentate gyrus mid-moleculare or the CA1 stratum lacunosum moleculare were inhibited by DCG-IV with IC(50) values and maximum percentage inhibition of: 169 nM (60%) and 41 nM (72%) in wild-type mice and 273 nM (19%) and 116 nM (49%) in mGlu2 -/- mice, respectively.

View Article and Find Full Text PDF

NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia, and pharmacological and genetic approaches have been used to model such dysfunction. We previously have described two mouse lines carrying point mutations in the NMDA receptor glycine binding site, Grin1(D481N) and Grin1(K483Q), which exhibit 5- and 86-fold reductions in receptor glycine affinity, respectively. Grin1(D481N) animals exhibit a relatively mild phenotype compatible with a moderate reduction in NMDA receptor function, whereas Grin1(K483Q) animals die shortly after birth.

View Article and Find Full Text PDF

These studies have addressed the role of caspase-3 activation in neuronal death after cerebral ischemia in different animal models. The authors were unable to show activation of procaspase-3 measured as an induction of DEVDase (Asp-Glu-Val-Asp) activity after focal or transient forebrain ischemia in rats. DEVDase activity could not be induced in the cytosolic fraction of the brain tissue obtained from these animals by exogenous cytochrome c/dATP and Ca2+.

View Article and Find Full Text PDF