Nanoparticle-based labels are emerging as simpler and more sensitive alternatives to traditional fluorescent small molecules and radioactive reporters in biomarker assays. The determination of biomarker levels is a recommended clinical practice for the assessment of many diseases, and detection of multiple analytes in a single assay, known as multiplexing, can increase predictive accuracy. While multiplexed detection can also simplify assay procedures and reduce systematic variability, combining multiple assays into a single procedure can lead to complications such as substrate cross-reactivity, signal overlap, and loss of sensitivity.
View Article and Find Full Text PDFResponsive hybrid nanomaterials with well-defined properties are of significant interest for the development of biosensors with additional applications in tissue engineering and drug delivery. Here, we present a detailed characterization using UV-vis spectroscopy and small angle X-ray scattering of a hybrid material comprised of polypeptide-decorated gold nanoparticles with highly controllable assembly properties. The assembly is triggered by a folding-dependent bridging of the particles mediated by the heteroassociation of immobilized helix-loop-helix polypeptides and a complementary nonlinear polypeptide present in solution.
View Article and Find Full Text PDF