Publications by authors named "John A Fuerst"

Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp.

View Article and Find Full Text PDF

A metagenomic study of marine sediments from a hydrothermal vent field in the Arctic Mid-Ocean Ridge revealed wider diversity amongst members of the phylum Chlamydiae than was previously known. Unlike known chlamydiae, some of the newly described marine-sediment species may be potentially free-living.

View Article and Find Full Text PDF

Bacteria of the phylum Planctomycetes have a unique cell plan with an elaborate intracellular membrane system, thereby resembling eukaryotic cells. The origin and evolution of these remarkable features is debated. To study the evolutionary genomics of bacteria with complex cell architectures, we have resequenced the 9.

View Article and Find Full Text PDF

A gram-negative, budding, catalase negative, oxidase positive and non-motile bacterium (MBLW1) with a complex endomembrane system has been isolated from a freshwater lake in southeast Queensland, Australia. Phylogeny based on 16S rRNA gene sequence analysis places the strain within the family Planctomycetaceae, related to Zavarzinella formosa (93.3 %), Telmatocola sphagniphila (93.

View Article and Find Full Text PDF

Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.

View Article and Find Full Text PDF

The nuclear compartment commonality (NuCom) hypothesis posits a complex last common ancestor (LUCA) with membranous compartments including a nuclear membrane. Such a LUCA then evolved to produce two nucleated lineages of the tree of life: the Planctomycetes-Verrucomicrobia-Chlamydia superphylum (PVC) within the Bacteria, and the Eukarya. We propose that a group of ancient essential protokaryotic signature proteins (PSPs) originating in LUCA were incorporated into ancestors of PVC Bacteria and Eukarya.

View Article and Find Full Text PDF

The structures of acyl homoserine lactone (AHL) compounds and their quantification were accomplished using an integrated liquid chromatography-mass spectrometry approach. The precursor and product ions, along with retention times of peaks, were searched against an in-house database of AHLs and structures confirmed by accurate mass and by comparison with authentic AHL standards. The two compounds, N-(3-oxodecanoyl)-L-homoserine lactone and N-(3-oxododecanoyl)-L-homoserine lactone, were characterised and quantified in Salinispora sp.

View Article and Find Full Text PDF

An LC-MS-based metabolomics approach was used to characterise the variation in secondary metabolite production due to changes in the salt content of the growth media as well as across different growth periods (incubation times). We used metabolomics as a tool to investigate the production of rifamycins (antibiotics) and other secondary metabolites in the obligate marine actinobacterial species Salinispora arenicola, isolated from Great Barrier Reef (GBR) sponges, at two defined salt concentrations and over three different incubation periods. The results indicated that a 14 day incubation period is optimal for the maximum production of rifamycin B, whereas rifamycin S and W achieve their maximum concentration at 29 days.

View Article and Find Full Text PDF

Marine sponges harbor diverse microbial communities, encompassing not only three domains of life including Bacteria, Archaea and eukaryotes, but also many different phyla within Bacteria. This diversity implies a rich source for biodiscovery of new natural products. Here, we review recent progress in our understanding of this genetic diversity, its retrieval via culture and genomic approaches, and its implications for chemical diversity and other biotechnology applications of sponge microorganisms and their genes.

View Article and Find Full Text PDF

Marine sponges are a major component of benthic communities and act as a reservoir for microbial species. In terms of biomass, they are the richest source of secondary metabolite production, with the potential to influence both benthic and pelagic systems. In most cases it is the sponge-associated microbes that account for many of the secondary metabolites assigned to the host.

View Article and Find Full Text PDF

Members of phylum Planctomycetes have been proposed to possess atypical cell organisation for the Bacteria, having a structure of sectioned cells consistent with internal compartments surrounded by membranes. Here via electron tomography we confirm the presence of compartments in the planctomycete Gemmata obscuriglobus cells. Resulting 3-D models for the most prominent structures, nuclear body and riboplasm, demonstrate their entirely membrane - enclosed nature.

View Article and Find Full Text PDF

Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products.

View Article and Find Full Text PDF

Forty-five strains from two different species (Salinispora arenicola and Salinispora pacifica) were isolated from three different marine sponge species in the Great Barrier Reef region of Australia. We found that two of the strains of Salinispora arenicola (MV0335 and MV0029) produced mevinolin, a fungus-derived cholesterol-lowering agent. Compound structure was determined using an integrated approach: (a) high performance liquid chromatography-quadrupole time-of-flight-mass spectrometric analysis with multimode ionization (electrospray ionization and atmospheric pressure chemical ionization) and fast polarity switching; and (b) database searching and matching of monoisotopic masses, retention times and mass spectra of the precursor and product ions of the compounds of interest and the authentic reference standards thereof.

View Article and Find Full Text PDF

The MDPI journal Microorganisms is still very young, having been launched in 2013, but the concept of the microorganism has been in use for at least a century as a unifying principle for the discipline of microbiology, which was cemented firmly by the intellectual work of Roger Stanier and colleagues in their Microbial World and other general microbiology textbooks and related articles from the 1950s to the 1970s [1,2]. Merging the idea of the microscopic and the very small with the older idea of an organism as a living entity or cell, the concept of a microorganism enabled a real appreciation of the microbial world as one that is amenable to study using similar tools and approaches even though representing distinctly different types of reproductive units and cell organizations. In the late 20th century following the work of Carl Woese and other molecular evolutionists, biologists came to appreciate the commonality among all organisms, all being comprised of cells that bear a remarkable similarity to one another and that share a common evolutionary ancestry, and consequently with major features of a largely shared genetic code and molecular biology.

View Article and Find Full Text PDF

An endocytosis-like process of protein uptake in the planctomycete Gemmata obscuriglobus is a recently discovered process unprecedented in the bacterial world. The molecular mechanisms underlying this process are not yet characterized. A homolog of the MC (membrane-coating) proteins of eukaryotes has been proposed to be involved in the mechanism of this process, but its relationship to eukaryote proteins is controversial.

View Article and Find Full Text PDF

The PVC superphylum is a phylogenetically supported collection of various related bacterial phyla that comprise unusual characteristics and traits. The 'PVC' abbreviation derives from Planctomycetes, Verrucomicrobia and Chlamydiae as members of this superphylum, while additional bacterial phyla are related. There has recently been increasing and exciting interest in the cell biology, physiology and ecology of members of this superphylum, including evolutionary implications of the complex cell organization of some species.

View Article and Find Full Text PDF

Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins.

View Article and Find Full Text PDF

Planctomycetes are ubiquitous in marine environment and were reported to occur in association with multicellular eukaryotic organisms such as marine macroalgae and invertebrates. Here, we investigate planctomycetes associated with the marine sponge Niphates sp. from the sub-tropical Australian coast by assessing their diversity using culture-dependent and -independent approaches based on the 16S rRNA gene.

View Article and Find Full Text PDF

The PVC superphylum is a grouping of distinct phyla of the domain bacteria proposed initially on the basis of 16S rRNA gene sequence analysis. It consists of a core of phyla Planctomycetes, Verrucomicrobia and Chlamydiae, but several other phyla have been considered to be members, including phylum Lentisphaerae and several other phyla consisting only of yet-to-be cultured members. The genomics-based links between Planctomycetes, Verrucomicrobia and Chlamydiae have been recently strengthened, but there appear to be other features which may confirm the relationship at least of Planctomycetes, Verrucomicrobia and Lentisphaerae.

View Article and Find Full Text PDF

Bacteria in the phylum Planctomycetes and some related phyla challenge our concept of the typical bacterium as consisting of cells without internal compartments or membrane-bounded organelles. Cells of all species of planctomycetes examined consist of at least two major compartments, and there are two other types of compartmentation in which a third compartment is formed either by a double-membrane envelope around the nucleoid in the case of the aerobic Gemmata obscuriglobus or by a single but potentially energized membrane in the case of the anaerobic ammonium-oxidizing anammox planctomycetes. We examine here the nature of these planctomycete compartments in relation to function and their relationship to the endomembranes defining them, and discuss the implications of the remarkable compartment-confined process of protein uptake in Gemmata, which resembles receptor- and clathrin-mediated endocytosis of eukaryotes.

View Article and Find Full Text PDF

The developmental cycle of the obligate marine antibiotic producer actinobacterium Salinispora arenicola isolated from a Great Barrier Reef marine sponge was investigated in relation to mycelium and spore ultrastructure, synthesis of rifamycin antibiotic compounds, and expression of genes correlated with spore formation and with rifamycin precursor synthesis. The developmental cycle of S. arenicola M413 on solid agar medium was characterized by substrate mycelium growth, change of colony color, and spore formation; spore formation occurred quite early in colony growth but development of black colonies occurred only at late stages, correlated with a change in spore maturity in relation to cell wall layers.

View Article and Find Full Text PDF

The nucleoid of the planctomycete Gemmata obscuriglobus is unique within the Bacteria in being both highly condensed and enclosed by a double-membrane nuclear envelope, seemingly analogous to the nucleus of eukaryotes. Here we have applied electron tomography to study high-pressure frozen, cryosubstituted cells of G. obscuriglobus and found multiple nested orders of DNA organization within the condensed nucleoid structure.

View Article and Find Full Text PDF

Planctomycetes are known to display compartmentalization via internal membranes, thus resembling eukaryotes. Significantly, the planctomycete Gemmata obscuriglobus has not only a nuclear region surrounded by a double-membrane, but is also capable of protein uptake via endocytosis. In order to clearly analyze implications for homology of their characters with eukaryotes, a correct understanding of planctomycete structure is an essential starting point.

View Article and Find Full Text PDF

Planctomycetes form a distinct phylum of the domain Bacteria and possess unusual features such as intracellular compartmentalization and a lack of peptidoglycan in their cell walls. Remarkably, cells of the genus Gemmata even contain a membrane-bound nucleoid analogous to the eukaryotic nucleus. Moreover, the so-called 'anammox' planctomycetes have a unique anaerobic, autotrophic metabolism that includes the ability to oxidize ammonium; this process is dependent on a characteristic membrane-bound cell compartment called the anammoxosome, which might be a functional analogue of the eukaryotic mitochondrion.

View Article and Find Full Text PDF