Toll-like receptor (TLR) activation converts immunologically inactive tumors into immunologically active tumors by activating tumor residing antigen-presenting cells and recruitment of cytotoxic T lymphocytes. Targeted immune agonists (TIAs) are antibody drug conjugates with small-molecule TLR agonist payloads. The mechanism of action of TIAs involves tumor antigen recognition, Fcγ-receptor-dependent phagocytosis, and TLR-mediated activation to drive tumor killing by myeloid cells.
View Article and Find Full Text PDFToll-like receptors 7 and 8 are involved in modulating the adaptive and innate immune responses, and their activation has shown promise as a therapeutic strategy in the field of immuno-oncology. While systemic exposure to TLR7/8 agonists can result in poor tolerance, combination therapies and targeted delivery through antibody-drug conjugates (ADCs) can help mitigate adverse effects. Described herein is the identification of a novel and potent series of pyrazolopyrimidine-based TLR7/8 agonists with tunable receptor selectivity.
View Article and Find Full Text PDFDysregulated iron homeostasis underlies diverse pathologies, from ischemia-reperfusion injury to epithelial-mesenchymal transition and drug-tolerant "persister" cancer cell states. Here, we introduce ferrous iron-activatable luciferin-1 (FeAL-1), a small-molecule probe for bioluminescent imaging of the labile iron pool (LIP) in luciferase-expressing cells and animals. We find that FeAL-1 detects LIP fluctuations in cells after iron supplementation, depletion, or treatment with hepcidin, the master regulator of systemic iron in mammalian physiology.
View Article and Find Full Text PDFCysteines are routinely used as site-specific handles to synthesize antibody-drug conjugates for targeted immunotherapy applications. Michael additions between thiols and maleimides are some of the most common methods for modifying cysteines, but these functional groups can be difficult to prepare on scale, and the resulting linkages have been shown to be reversible under some physiological conditions. Here, we show that the enzyme tyrosinase, which oxidizes conveniently accessed phenols to afford reactive -quinone intermediates, can be used to attach phenolic cargo to cysteines engineered on antibody surfaces.
View Article and Find Full Text PDFHerein we describe the discovery of A-1331852, a first-in-class orally active BCL-X inhibitor that selectively and potently induces apoptosis in BCL-X-dependent tumor cells. This molecule was generated by re-engineering our previously reported BCL-X inhibitor A-1155463 using structure-based drug design. Key design elements included rigidification of the A-1155463 pharmacophore and introduction of sp-rich moieties capable of generating highly productive interactions within the key P4 pocket of BCL-X.
View Article and Find Full Text PDFSolubilization of new chemical entities for toxicity assessment must use excipients that do not negatively impact drug pharmacokinetics and toxicology. In this study, we investigated the tolerability of a model freebase compound, GDC-0152, solubilized by pH adjustment with succinic acid and complexation with hydroxypropyl-β-cyclodextrin (HP-β-CD) to enable intravenous use. Solubility, critical micelle concentration, and association constant with HP-β-CD were determined.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) have become an important therapeutic modality for oncology, with three approved by the FDA and over 60 others in clinical trials. Despite the progress, improvements in ADC therapeutic index are desired. Peptide-based ADC linkers that are cleaved by lysosomal proteases have shown sufficient stability in serum and effective payload-release in targeted cells.
View Article and Find Full Text PDFDisulfide bonds provide a bioactivatable connection with applications in imaging and therapy. The circulation stability and intracellular release of disulfides are problematically coupled in that increasing stability causes a corresponding decrease in cleavage and payload release. However, an antibody offers the potential for a reversible stabilization.
View Article and Find Full Text PDFA novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody-drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC.
View Article and Find Full Text PDFThe reversible post-translational modification of proteins by ubiquitin and ubiquitin-like proteins regulates almost all cellular processes, by affecting protein degradation, localization, and complex formation. Deubiquitinases (DUBs) are proteases that remove ubiquitin modifications or cleave ubiquitin chains. Most DUBs are cysteine proteases, which makes them well suited for study by activity-based probes.
View Article and Find Full Text PDFProteasomes are multisubunit protease complexes responsible for degrading most intracellular proteins. In addition to removing damaged proteins, they regulate many important cellular processes through the controlled degradation of transcription factors, cell cycle regulators, and enzymes. Eukaryotic proteasomes have three catalytic subunits, β1, β2, and β5, that each has different substrate specificities.
View Article and Find Full Text PDFThe reversible attachment of a small-molecule drug to a carrier for targeted delivery can improve pharmacokinetics and the therapeutic index. Previous studies have reported the delivery of molecules that contain primary and secondary amines via an amide or carbamate bond; however, the ability to employ tertiary-amine-containing bioactive molecules has been elusive. Here we describe a bioreversible linkage based on a quaternary ammonium that can be used to connect a broad array of tertiary and heteroaryl amines to a carrier protein.
View Article and Find Full Text PDFStaphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy.
View Article and Find Full Text PDFACS Med Chem Lett
October 2014
A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated.
View Article and Find Full Text PDFBecause of the promise of BCL-2 antagonists in combating chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), interest in additional selective antagonists of antiapoptotic proteins has grown. Beginning with a series of selective, potent BCL-XL antagonists containing an undesirable hydrazone functionality, in silico design and X-ray crystallography were utilized to develop alternative scaffolds that retained the selectivity and potency of the starting compounds.
View Article and Find Full Text PDFCurr Top Med Chem
October 2014
Partnerships between industry and academia are becoming increasingly complex and relevant in the drive to discover innovative new medicines. We describe the structure of the collaboration between the University of California - San Francisco - Small Molecule Discovery Center (UCSF-SMDC) and Genentech to develop chemical matter that inhibits the activity of caspase-6. We focus on the scientific basis for the partnership and how the orientation- and transaction-related barriers were overcome.
View Article and Find Full Text PDFThe application of modeling and simulation techniques is increasingly common in the preclinical stages of the drug development process. GDC-0917 [(S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)-N-(2-(oxazol-2-yl)-4-phenylthiazol-5-yl)pyrrolidine-2-carboxamide] is a potent second-generation antagonist of inhibitor of apoptosis (IAP) proteins that is being developed for the treatment of various cancers. GDC-0917 has low to moderate clearance in the mouse (12.
View Article and Find Full Text PDFThe prosurvival BCL-2 family protein BCL-X(L) is often overexpressed in solid tumors and renders malignant tumor cells resistant to anticancer therapeutics. Enhancing apoptotic responses by inhibiting BCL-X(L) will most likely have widespread utility in cancer treatment and, instead of inhibiting multiple prosurvival BCL-2 family members, a BCL-X(L)-selective inhibitor would be expected to minimize the toxicity to normal tissues. We describe the use of a high-throughput screen to discover a new series of small molecules targeting BCL-X(L) and their structure-guided development by medicinal chemistry.
View Article and Find Full Text PDFWith over 20 antibody-drug conjugates in clinical trials as well as a recently FDA-approved drug, it is clear that this is becoming an important and viable approach for selectively delivering highly cytotoxic agents to tumor cells while sparing normal tissue. This review discusses the critical aspects for this approach with an emphasis on the properties of the linker between the antibody and the cytotoxic payload that are required for an effective antibody-drug conjugate. Different linkers are illustrated with attention focused on (i) the specifics of attachment to the antibody, (ii) the polarity of the linker, (iii) the trigger on the linker that initiates cleavage from the drug, and (iv) the self-immolative spacer that liberates the active payload.
View Article and Find Full Text PDFInhibitor-of-apoptosis (IAP) proteins suppress apoptosis and are overexpressed in a variety of cancers. Small-molecule IAP antagonists are currently being tested in clinical trials as novel cancer therapeutics. GDC-0152 is a small-molecule drug that triggers tumor cell apoptosis by selectively antagonizing IAPs.
View Article and Find Full Text PDFInhibitor of apoptosis (IAP) proteins suppress apoptosis and are overexpressed in a variety of cancers. GDC-0152 is a potent and selective IAP antagonist being developed as an anticancer agent. In preclinical safety studies, dogs were particularly sensitive to GDC-0152 showing adverse signs of a tumor necrosis factor alpha (TNF-α) driven systemic inflammatory response, related to cellular IAP degradation and activation of NFκB signaling, at lower exposures compared with rat.
View Article and Find Full Text PDFA series of compounds were designed and synthesized as antagonists of cIAP1/2, ML-IAP, and XIAP based on the N-terminus, AVPI, of mature Smac. Compound 1 (GDC-0152) has the best profile of these compounds; it binds to the XIAP BIR3 domain, the BIR domain of ML-IAP, and the BIR3 domains of cIAP1 and cIAP2 with K(i) values of 28, 14, 17, and 43 nM, respectively. These compounds promote degradation of cIAP1, induce activation of caspase-3/7, and lead to decreased viability of breast cancer cells without affecting normal mammary epithelial cells.
View Article and Find Full Text PDFABT-737 and ABT-263 are potent inhibitors of the BH3 antiapoptotic proteins, Bcl-x(L) and Bcl-2. This class of putative anticancer agents invariantly contains an acylsulfonamide core. We have designed and synthesized a series of novel quinazoline-based inhibitors of Bcl-2 and Bcl-x(L) that contain a heterocyclic alternative to the acylsulfonamide.
View Article and Find Full Text PDF