Actin polymerization is often associated with membrane proteins containing capping-protein-interacting (CPI) motifs, such as CARMIL, CD2AP, and WASHCAP/Fam21. CPI motifs bind directly to actin capping protein (CP), and this interaction weakens the binding of CP to barbed ends of actin filaments, lessening the ability of CP to functionally cap those ends. The protein V-1 / myotrophin binds to the F-actin binding site on CP and sterically blocks CP from binding barbed ends.
View Article and Find Full Text PDFCellular functions of actin capping protein (CP) regulators are poorly understood. Di Pietro and colleagues (https://doi.org/10.
View Article and Find Full Text PDFActin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands.
View Article and Find Full Text PDFActin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands.
View Article and Find Full Text PDFDendritic spines are small actin-rich protrusions essential for the formation of functional circuits in the mammalian brain. During development, spines begin as dynamic filopodia-like protrusions that are then replaced by relatively stable spines containing an expanded head. Remodeling of the actin cytoskeleton plays a key role in the formation and modification of spine morphology, however many of the underlying regulatory mechanisms remain unclear.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
October 2022
Septins in endothelial cells (ECs) have important roles supporting the integrity of the endothelial monolayer. Cell-cell junctions in EC monolayers are highly dynamic, with continuous retractions and protrusions. Depletion of septins in ECs leads to disruption of cell-cell junctions, which are composed of VE-cadherin and other junctional proteins.
View Article and Find Full Text PDFCell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins.
View Article and Find Full Text PDFObjective: This paper describes the development of the third edition of the National Health and Medical Research Australian Guidelines for the Prevention and Treatment of Acute Stress Disorder, posttraumatic stress disorder and Complex posttraumatic stress disorder, highlighting key changes in scope, methodology, format and treatment recommendations from the previous 2013 edition of the Guidelines.
Method: Systematic review of the international research was undertaken, with GRADE methodology used to assess the certainty of the evidence, and evidence to decision frameworks used to generate recommendations. The Guidelines are presented in an online format using MAGICApp.
Uveal melanoma (UM) is the most common intraocular tumor in adults. Nearly half of UM patients develop metastatic disease and often succumb within months because effective therapy is lacking. A novel therapeutic approach has been suggested by the discovery that UM cell lines driven by mutant constitutively active Gq or G11 can be targeted by FR900359 (FR) or YM-254890, which are bioavailable, selective inhibitors of the Gq/11/14 subfamily of heterotrimeric G proteins.
View Article and Find Full Text PDFUveal melanomas (UMs) are malignant cancers arising from the pigmented layers of the eye. UM cells spread through the bloodstream, and circulating UM cells are detectable in patients before metastases appear. Extravasation of UM cells is necessary for formation of metastases, and transendothelial migration (TEM) is a key step in extravasation.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2021
Objective: Septin 2 is localized at junctions in human microvascular endothelial monolayers. The junctional localization of septin 2 is necessary for organization of cell-cell adhesion proteins of endothelial cells. Approach and Results: Septin 2 was depleted at junctions by suppression of expression using shRNA, treatment with inflammatory cytokine, TNF (tumor necrosis factor)-α, and ectopic overexpression of septin 2 phosphatidylinositol 4,5-bisphosphate binding mutant defect in interaction with plasma membrane.
View Article and Find Full Text PDFThe heterodimeric actin capping protein (CP) is regulated by a set of proteins that contain CP-interacting (CPI) motifs. Outside of the CPI motif, the sequences of these proteins are unrelated and distinct. The CPI motif and surrounding sequences are conserved within a given protein family, when compared to those of other CPI-motif protein families.
View Article and Find Full Text PDFWe describe our search for the molecular mechanisms of cell motility with personal recollections of bucket biochemistry in Tom Pollards Lab at the Johns Hopkins, circa 1980.
View Article and Find Full Text PDFBMC Med Genomics
November 2018
Background: BAP1 is a histone deubiquitinase that acts as a tumor and metastasis suppressor associated with disease progression in human cancer. We have used the "Calling Card System" of transposase-directed transposon insertion mapping to identify the genomic targets of BAP1 in uveal melanoma (UM). This system was developed to identify the genomic loci visited by transcription factors that bind directly to DNA; our study is the first use of the system with a chromatin-remodeling factor that binds to histones but does not interact directly with DNA.
View Article and Find Full Text PDFCellular actin assembly is controlled at the barbed ends of actin filaments, where capping protein (CP) limits polymerization. Twinfilin is a conserved in vivo binding partner of CP, yet the significance of this interaction has remained a mystery. Here, we discover that the C-terminal tail of Twinfilin harbors a CP-interacting (CPI) motif, identifying it as a novel CPI-motif protein.
View Article and Find Full Text PDFConstitutively active G protein α subunits cause cancer, cholera, Sturge-Weber syndrome, and other disorders. Therapeutic intervention by targeted inhibition of constitutively active Gα subunits in these disorders has yet to be achieved. We found that constitutively active Gα in uveal melanoma (UM) cells was inhibited by the cyclic depsipeptide FR900359 (FR).
View Article and Find Full Text PDFActin assembly is important for cell motility. The ability of actin subunits to join or leave filaments via the barbed end is critical to actin dynamics. Capping protein (CP) binds to barbed ends to prevent subunit gain and loss and is regulated by proteins that include V-1 and CARMIL.
View Article and Find Full Text PDFJunctional integrity of endothelial monolayers is crucial to control movement of molecules and cells across the endothelium. Examining the structure and dynamics of cell junctions in endothelial monolayers, we discovered a role for septins. Contacts between adjacent endothelial cells were dynamic, with protrusions extending above or below neighboring cells.
View Article and Find Full Text PDFCARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem.
View Article and Find Full Text PDFMigration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules.
View Article and Find Full Text PDFUnlabelled: The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined.
View Article and Find Full Text PDFElucidating the molecular regulation of macrophage migration is essential for understanding the pathophysiology of multiple human diseases, including host responses to infection and autoimmune disorders. Macrophage migration is supported by dynamic rearrangements of the actin cytoskeleton, with formation of actin-based structures such as podosomes and lamellipodia. Here we provide novel insights into the function of the actin-bundling protein l-plastin (LPL) in primary macrophages.
View Article and Find Full Text PDF