Drug development for neglected tropical diseases, defined as a collection of infectious diseases affecting over 4 billion people worldwide (especially endemic to poverty-stricken populations in underdeveloped regions of Africa, Asia, the Pacific Rim, and Latin America), has been underfunded and stagnant. A much needed resurgence of R&D activity in this area is currently developing. Target-directed screening and whole-cell phenotypic screening represent two complementary approaches to discover viable new starting point scaffolds for medicinal chemistry optimization.
View Article and Find Full Text PDFAssay Drug Dev Technol
August 2010
Ion channels have provided a diverse set of therapeutic targets across all areas of the pharmaceutical industry. Many companies are pursuing this unique class of targets for areas of unmet medical need such as neuropathic and inflammatory pains. In the past, focused library screening sets had been designed for CNS and kinase targets.
View Article and Find Full Text PDFSubstituted pyridazino[4,5-b]indolizines were identified as potent and selective PDE4B inhibitors. We describe the structure-activity relationships generated around an HTS hit that led to a series of compounds with low nanomolar affinity for PDE4B and high selectivity over the PDE4D subtype.
View Article and Find Full Text PDFIn an effort to discover potent, orally bioavailable compounds for the treatment of atrial fibrillation (AF) and ventricular tachycardia (VT), we developed a class of gap-junction modifiers typified by GAP-134 (1, R(1)=OH, R(2)=NH(2)), a compound currently under clinical evaluation. Selected compounds with the desired in-vitro profile demonstrated positive in vivo results in the mouse CaCl(2) arrhythmia model upon oral administration.
View Article and Find Full Text PDFRotigaptide (3) is an antiarrhythmic peptide that improves cardiac conduction by modifying gap-junction communication. Small molecule gap-junction modifiers with improved physical properties were identified from a Zealand Pharma peptide library using pharmaceutical profiling, established SAR around 3, and a putative pharmacophore model for rotigaptide. Activity of the compounds was confirmed in a mouse cardiac conduction block model of arrhythmia.
View Article and Find Full Text PDFPrevious studies with perzinfotel (1), a potent, selective, competitive NMDA receptor antagonist, showed it to be efficacious in inflammatory and neuropathic pain models. To increase the low oral bioavailability of 1 (3-5%), prodrug derivatives (3a-h) were synthesized and evaluated. The oxymethylene-spaced diphenyl analogue 3a demonstrated good stability at acidic and neutral pH, as well as in simulated gastric fluid.
View Article and Find Full Text PDFProgesterone receptor (PR) modulators are used in contraception and post-menopausal hormone therapy, and are under clinical development for reproductive disorders such as uterine fibroids and endometriosis. Development of tissue selective PR modulators (SPRMs) with reduced side effects and improved pharmacology represents a large unmet medical need in the area of women's health. One approach to addressing this need is to focus on the two PR isoforms PR-A and PR-B.
View Article and Find Full Text PDFThis review provides an overview of ligands for the excitatory amino acid transporters (EAATs), a family of high-affinity glutamate transporters localized to the plasma membrane of neurons and astroglial cells. Ligand development from the perspective of identifying novel and more selective tools for elucidating transporter subtype function, and the potential of transporter ligands in a therapeutic setting are discussed. Acute pharmacological modulation of EAAT activity in the form of linear and conformationally restricted glutamate and aspartate analogs is presented, in addition to recent strategies aimed more toward modulating transporter expression levels, the latter of particular significance to the development of transporter based therapeutics.
View Article and Find Full Text PDFWe have reported on the design, synthesis, and biological characterization of (R)-4-[3,4-dioxo-2-(1,2,2-trimethyl-propylamino)-cyclobut-1-enylamino]-3-ethyl-benzonitrile (1), a novel, potent, and selective adenosine 5'-triphosphate-sensitive potassium (K(ATP)) channel opener with potential utility for the treatment of urge urinary incontinence (UUI). Excising the aniline-derived nitrogen atom of 1 or replacing it with an aralkyl group, led to bladder smooth muscle relaxant chemotypes 3 and 4, respectively. Prototype compounds in these series were found to produce significant increases in an iberiotoxin (IbTx)-sensitive hyperpolarizing current, thus suggesting that these relatively modest structural modifications resulted in a switch in the mechanism of action of these smooth muscle relaxants from K(ATP) channel openers to activators of the large-conductance Ca2+-activated potassium channel (BK(Ca)).
View Article and Find Full Text PDFA novel series of substituted sulfanyldihydroimidazolones (1) that modulates high-density lipoprotein cholesterol (HDL-C) has been reported to have HDL-elevating properties in several animal models. Concerns about the chemical and metabolic stability of 1 directed us to explore the structure-activity relationship (SAR) of a related series of substituted thiohydantoins (2). Expansion of the scope of the thiohydantoin series led to exploration of compounds in related thio-containing ring systems 3-7 and the N-cyanoguanidine derivative 8.
View Article and Find Full Text PDF