Introduction: Throughout domestication, crop plants have gone through strong genetic bottlenecks, dramatically reducing the genetic diversity in today's available germplasm. This has also reduced the diversity in traits necessary for breeders to develop improved varieties. Many strategies have been developed to improve both genetic and trait diversity in crops, from backcrossing with wild relatives, to chemical/radiation mutagenesis, to genetic engineering.
View Article and Find Full Text PDFGolden Gate assembly is a requisite method in synthetic biology that facilitates critical conventions such as genetic part abstraction and rapid prototyping. However, compared to robotic implementation, manual Golden Gate implementation is cumbersome, error-prone, and inconsistent for complex assembly designs. AssemblyTron is an open-source python package that provides an affordable automation solution using open-source OpenTrons OT-2 lab robots.
View Article and Find Full Text PDF, soybean, is an abundantly cultivated crop worldwide. Efforts have been made over the past decades to improve soybean production in traditional and organic agriculture, driven by growing demand for soybean-based products. Rapid canopy cover development (RCC) increases soybean yields and suppresses early-season weeds.
View Article and Find Full Text PDFEvery year biotechnology labs generate a combined total of ∼5.5 million tons of plastic waste. As the global bioeconomy expands, biofoundries will inevitably increase plastic consumption in-step with synthetic biology scaling.
View Article and Find Full Text PDFAs one of the newest fields of engineering, synthetic biology relies upon a trial-and-error Design-Build-Test-Learn (DBTL) approach to simultaneously learn how a function is encoded in biology and attempt to engineer it. Many software and hardware platforms have been developed to automate, optimize and algorithmically perform each step of the DBTL cycle. However, there are many fewer options for automating the build step.
View Article and Find Full Text PDFEmerg Top Life Sci
November 2019
Genome editing is the precise alteration of DNA in living cells by the cutting or removal of specific sequences, sometimes followed by insertion of new sequences at the cut site. CRISPR-Cas9 has become firmly established as the genome-editing method of choice, replacing the systems that had been developed and in use since the early 1990s. The CRISPR-Cas9 system has been developed from a mechanism used in prokaryotes as a defence against bacteriophage but actually functions in cells of all types of organisms.
View Article and Find Full Text PDFBackground: The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms.
Scope: This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea.
In common with several other respiratory and photosynthetic enzymes, a sub-population of cytosolic phosphoglycerate kinase (PGK) occurs in the nucleus in pea leaves and shoots. The full-length cDNA encoding pea cytosolic PGK has been cloned and sequenced, revealing not only the PGK 'signature' but also a nuclear localization signal (NLS). A translational fusion of PGK and GFP was used to transform tobacco BY-2 cells resulting in GFP locating to the cell nuclei.
View Article and Find Full Text PDFVery little is known about the expression patterns in plants of genes that encode proteins involved in the initiation of DNA replication. Partial cDNA sequences that encode Cdc6 and Mcm3 in tobacco have been isolated. The sequences were used as probes in northern blots which suggested that, in the cell cycle of synchronized tobacco BY-2 cells, expression of CDC6 is confined to late G(1) and S-phase whereas the expression of MCM3 is not confined to any particular cell cycle phase.
View Article and Find Full Text PDFSchizosaccharomyces pombe Cdc23 is an essential DNA replication protein, conserved in eukaryotes and functionally homologous with Saccharomyces cerevisiae Dna43 (Mcm10). We sought evidence for interactions between Cdc23 and the MCM2-7 complex, a component of both the pre-replicative complex and the replication fork. Cdc23 shows genetic interactions with four MCM subunits: cdc23-M36 and cdc23-1E2 alleles both show synthetic phenotypes with mcm2 (cdc19-P1) and mcm6 (mis5-268), and cdc23-M36 is synthetically lethal with mcm4 (cdc21-K46) and with mcm5 (nda4-108).
View Article and Find Full Text PDFEndoreduplication is a common process in plants that allows cells to increase their DNA content. In the tobacco cell cultures studied in this work it can be induced by simple hormone deprivation. Mesophyll protoplast-derived cells cultured in the presence of NAA (auxin) and BAP (cytokinin) keep on dividing, while elongation and concomitant DNA endoreduplication are induced and maintained in a medium containing only NAA.
View Article and Find Full Text PDF