Publications by authors named "John A Arnott"

Calls to change medical education have been frequent, persistent, and generally limited to alterations in content or structural re-organization. Self-imposed barriers have prevented adoption of more radical pedagogical approaches, so recent predictions of the 'inevitability' of medical education transitioning to online delivery seemed unlikely. Then in March 2020 the COVID-19 pandemic forced medical schools to overcome established barriers overnight and make the most rapid curricular shift in medical education's history.

View Article and Find Full Text PDF

Goodman and Gilman's (PBT) has been a cornerstone in the education of pharmacists, physicians, and pharmacologists for decades. The objectives of this study were to describe and evaluate the 13 edition of PBT on bases including: (1) author characteristics; (2) recency of citations; (3) conflict of interest (CoI) disclosure; (4) expert evaluation of chapters. Contributors' (N = 115) sex, professional degrees, and presence of undisclosed potential CoI-as reported by the Center for Medicare and Medicaid's Open Payments (2013-2017)-were examined.

View Article and Find Full Text PDF

Background: CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts and Src is required for CCN2 induction by TGF-β1; however, the molecular mechanisms that control CCN2 induction in osteoblasts are poorly understood. AFAP1 binds activated forms of Src and can direct the activation of Src in certain cell types, however a role for AFAP1 downstream of TGF-β1 or in osteoblats is undefined.

View Article and Find Full Text PDF

Selective estrogen receptor modulators (SERMs) are a diverse group of nonsteroidal compounds that function as agonists or antagonists for estrogen receptors (ERs) in a target gene-specific and tissue-specific fashion. SERM specificity involves tissue-specific expression of ER subtypes, differential expression of co-regulatory proteins in various tissues, and varying ER conformational changes induced by ligand binding. To date, the major clinical applications of SERMs are their use in the prevention and treatment of breast cancer, the prevention of osteoporosis, and the maintenance of beneficial serum lipid profiles in postmenopausal women.

View Article and Find Full Text PDF

Introduction: Palmitoylation describes the enzymatic attachment of the 16-carbon fatty acid, palmitate, to specific cysteines of proteins via a labile thioester bond. This post-translational modification increases the lipophilicity of the modified protein, thus regulating its subcellular distribution and function. The transfer of palmitate to a substrate is mediated by palmitoyl acyltransferases (PATs), while depalmitoylation is catalyzed by acyl protein thioesterases (APTs).

View Article and Find Full Text PDF

Transcription factors (TFs) orchestrate multiple cellular processes through tight regulation via post-translational modifications (PTMs). Thus, decoding the combinations of PTMs should provide critical layer of information that can be integrated into highly specific cellular outputs to reveal a network of genes and their target-specific regulation. Protein modifications play a decisive role in various drug responses and eventually in prognosis for many life-threatening diseases, and recent studies demonstrate that TF-based drug designing must consider structural and functional changes due to PTMs, yet we are just beginning to grasp this enormity and the impact on normal development and disease pathophysiology.

View Article and Find Full Text PDF

Most of the biological effects of estrogens are mediated via the estrogen receptors (ERs) at the level of gene regulation. Recently, new information regarding the role of ERs in physiology, pathology and the mechanisms through which estrogens bring about these functions has emerged. The physiological effects of estrogen are manifested through two ER isoforms - ERα and ERβ - which display distinct regions of sequence homology.

View Article and Find Full Text PDF

Introduction: The role of lipophilicity in drug discovery and design is a critical one. Lipophilicity is a key physicochemical property that plays a crucial role in determining ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties and the overall suitability of drug candidates. There is increasing evidence to suggest that control of physicochemical properties such as lipophilicity, within a defined optimal range, can improve compound quality and the likelihood of therapeutic success.

View Article and Find Full Text PDF

Background: Ets-1 controls osteoblast differentiation and bone development; however, its downstream mechanism of action in osteoblasts remains largely undetermined. CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts; however, the molecular mechanisms that control CCN2 induction are poorly understood.

View Article and Find Full Text PDF

Antiproliferative factor (APF) is a sialoglycopeptide elevated in the urine of patients with interstitial cystitis (IC)-a chronic, painful bladder disease of unknown etiology. APF inhibits the proliferation of normal bladder epithelial and T24 bladder carcinoma cells in vitro by binding to cytoskeleton-associated protein 4 (CKAP4) and altering the transcription of genes involved in proliferation, cellular adhesion, and tumorigenesis; however, specific molecular mechanisms and effector genes that control APF's antiproliferative effects are unknown. In this study, we found that there was a 7.

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF) is a 38 kDa, cysteine rich, extracellular matrix protein composed of 4 domains or modules. CTGF has been shown to regulate a diverse array of cellular functions and has been implicated in more complex biological processes such as angiogenesis, chondrogenesis, and osteogenesis. A role for CTGF in the development and maintenance of skeletal tissues first came to light in studies demonstrating its expression in cartilage and bone cells, which was dramatically increased during skeletal repair or regeneration.

View Article and Find Full Text PDF

Intrinsically disordered (ID) regions are frequently found in the activation domains of many transcription factors including nuclear hormone receptors. It is believed that these ID regions promote molecular recognition by creating large surfaces suitable for interactions with their specific protein binding partners, which is a critical component of gene regulation by transcription factors. It has been hypothesized that conditional folding of these activation domains may be a prerequisite for their efficient interaction with specific coregulatory proteins, and subsequent transcriptional activity leading to the regulation of target gene(s).

View Article and Find Full Text PDF

Ran GTPase has been shown to be involved in host innate immune response, and two alleles, RanT/n and RanC/d, which differ from each other by a single nucleotide, have opposite effects on host innate immune response. In this study, we showed that although intravenous administration in mice with either Ran cDNA using an identical adenovirus (Ad) vector resulted in no significant difference in vector tissue distribution, intraperitoneal administration resulted in effective vector transduction into peritoneal macrophages, coupled with a striking difference in vector tissue distribution in 2 h or less. We further demonstrated the presence of prepackaged RNA in virions of Ad vectors, in cells actively producing Ad virus particles, and in cells very shortly after Ad infection.

View Article and Find Full Text PDF