Orphan GPR52 is emerging as a promising neurotherapeutic target. Optimization of previously reported lead employing an iterative drug design strategy led to the identification of a series of unique GPR52 agonists, such as (), (), and (), with improved potency and efficacy. Intriguingly, compounds and showed greater bias for G protein/cAMP signaling and induced significantly less in vitro desensitization than parent compound , indicating that reducing GPR52 β-arrestin activity with biased agonism results in sustained GPR52 activation.
View Article and Find Full Text PDFGPR52 is a highly conserved, brain-enriched, G-coupled orphan G protein-coupled receptor (GPCR) that controls various cyclic AMP (cAMP)-dependent physiological and pathological processes. Stimulation of GPR52 activity might be beneficial for the treatment of schizophrenia, psychiatric disorders and other human neurological diseases, whereas inhibition of its activity might provide a potential therapeutic approach for Huntington's disease. Excitingly, HTL0048149 (HTL'149), an orally available GPR52 agonist, has been advanced into phase I human clinical trials for the treatment of schizophrenia.
View Article and Find Full Text PDFBioremediation by biostimulation is an attractive alternative to excavation of contaminated soil. Many remediation methods have been tested with some success; however, due to highly variable results in realistic field conditions, they have not been implemented as widely as they might deserve. To ensure success, methods should be validated under site-analogous conditions before full scale use, which requires expertise and local knowledge by the implementers.
View Article and Find Full Text PDFACS Chem Neurosci
September 2023
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes.
View Article and Find Full Text PDFA non-synonymous single nucleotide polymorphism of the human serotonin 5-HT receptor (5-HTR) gene that converts a cysteine to a serine at amino acid codon 23 (Cys23Ser) appears to impact 5-HTR pharmacology at a cellular and systems level. We hypothesized that the Cys23Ser alters 5-HTR intracellular signaling via changes in subcellular localization in vitro. Using cell lines stably expressing the wild-type Cys23 or the Ser23 variant, we show that 5-HT evokes intracellular calcium release with decreased potency and peak response in the Ser23 versus the Cys23 cell lines.
View Article and Find Full Text PDFThe dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators.
View Article and Find Full Text PDFNoncatechol heterocycles have recently been discovered as potent and selective G protein biased dopamine 1 receptor (D1R) agonists with superior pharmacokinetic properties. To determine the structure-activity relationships centered on G protein or β-arrestin signaling bias, systematic medicinal chemistry was employed around three aromatic pharmacophores of the lead compound (PF2334), generating a series of new molecules that were evaluated at both D1R G-dependent cAMP signaling and β-arrestin recruitment in HEK293 cells. Here, we report the chemical synthesis, pharmacological evaluation, and molecular docking studies leading to the identification of two novel noncatechol D1R agonists that are a subnanomolar potent unbiased ligand (PW0441) and a nanomolar potent complete G protein biased ligand (PW0464), respectively.
View Article and Find Full Text PDFThe serotonin (5-HT) 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) in the central nervous system are implicated in a range of normal behaviors (e.g., appetite, sleep) and physiological functions (e.
View Article and Find Full Text PDFObesity is a growing public health concern, with 37.5% of the adult population in need of therapeutics that are more efficacious with a better side effect profile. An innovative target in this regard is neuromedin U, a neuropeptide shown to suppress food intake and attenuate weight gain in animal models.
View Article and Find Full Text PDFSelective activation of dopamine D1 receptors (D1Rs) has been pursued for 40 years as a therapeutic strategy for neurologic and psychiatric diseases due to the fundamental role of D1Rs in motor function, reward processing, and cognition. All known D1R-selective agonists are catechols, which are rapidly metabolized and desensitize the D1R after prolonged exposure, reducing agonist response. As such, drug-like selective D1R agonists have remained elusive.
View Article and Find Full Text PDFHealthy individuals display a tendency to allocate attention unequally across space, and this bias has implications for how individuals interact with their environments. However, the origins of this phenomenon remain relatively poorly understood. The present research examined the joint and independent contributions of two fundamental motivational systems - behavioural approach and inhibition systems (BAS and BIS) - to lateral spatial bias in a locomotion task.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
June 2015
Background: Currently, no clinical tools use demographic and risk factor information to predict the risk of finding an adenoma in individuals undergoing colon cancer screening. Such a tool would be valuable for identifying those who would most benefit from screening colonoscopy.
Methods: We used baseline data from men and women who underwent screening colonoscopy from the randomized, multicenter National Colonoscopy Study (NCS) to develop and validate an adenoma risk model.
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.
View Article and Find Full Text PDFAngelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele.
View Article and Find Full Text PDFSponsored by the New York Academy of Sciences and with support from the National Institute of Mental Health, the Life Technologies Foundation, and the Josiah Macy Jr. Foundation, "Advancing Drug Discovery for Schizophrenia" was held March 9-11 at the New York Academy of Sciences in New York City. The meeting, comprising individual talks and panel discussions, highlighted basic, clinical, and translational research approaches, all of which contribute to the overarching goal of enhancing the pharmaceutical armamentarium for treating schizophrenia.
View Article and Find Full Text PDFElucidating the key signal transduction pathways essential for both antipsychotic efficacy and side-effect profiles is essential for developing safer and more effective therapies. Recent work has highlighted noncanonical modes of dopamine D(2) receptor (D(2)R) signaling via β-arrestins as being important for the therapeutic actions of both antipsychotic and antimanic agents. We thus sought to create unique D(2)R agonists that display signaling bias via β-arrestin-ergic signaling.
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
April 2011
G protein-coupled receptors (GPCRs) are an evolutionarily conserved family of signaling molecules comprising approximately 2% of the human genome; this receptor family remains a central focus in basic pharmacology studies and drug discovery efforts. Detailed studies of drug action at GPCRs over the past decade have revealed existing and novel ligands that exhibit polypharmacology-that is, drugs with activity at more than one receptor target for which they were designed. These "off-target" drug actions can be a liability that causes adverse side effects; however, in several cases, drugs with less selectivity demonstrate better clinical efficacy.
View Article and Find Full Text PDFRecently we have perfected a chemical-genetic approach to gain precise spatio-temporal control of cellular signaling. This approach entails the cell-type specific expression of mutant G-protein coupled receptors which have been evolved to be activated by the pharmacologically inert drug-like small molecule clozapine N-oxide. We have named these mutant GPCRs DREADDs (Designer Receptors Exclusively Activated by Designer Drugs).
View Article and Find Full Text PDFThe 5-hydroxytryptamine 2A (5-HT(2A)) receptor is a member of the G protein-coupled receptor superfamily (GPCR) and plays a key role in transducing a variety of cellular signals elicited by serotonin (5-HT; 5-hydroxytryptamine) in both peripheral and central tissues. Recently, we discovered that the ERK/MAPK effector p90 ribosomal S6 kinase 2 (RSK2) phosphorylates the 5-HT(2A) receptor and attenuates 5-HT(2A) receptor signaling. This raised the intriguing possibility of a regulatory paradigm whereby receptor tyrosine kinases (RTKs) attenuate GPCR signaling (i.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2009
The 5-HT(2A) serotonin receptor is the most abundant serotonin receptor subtype in the cortex and is predominantly expressed in pyramidal neurons. The 5-HT(2A) receptor is a target of several hallucinogens, antipsychotics, anxiolytics, and antidepressants, and it has been associated with several psychiatric disorders, conditions that are also associated with aberrations in dendritic spine morphogenesis. However, the role of 5-HT(2A) receptors in regulating dendritic spine morphogenesis in cortical neurons is unknown.
View Article and Find Full Text PDFLipid rafts and caveolae are specialized membrane microdomains implicated in regulating G protein-coupled receptor signaling cascades. Previous studies have suggested that rafts/caveolae may regulate beta-adrenergic receptor/Galpha(s) signaling, but underlying molecular mechanisms are largely undefined. Using a simplified model system in C6 glioma cells, this study disrupts rafts/caveolae using both pharmacological and genetic approaches to test whether caveolin-1 and lipid microdomains regulate G(s) trafficking and signaling.
View Article and Find Full Text PDF