trying...
1138 1 0 1 MCID_676f085c6d133136a701c214
39659027
Johansson C[author] johansson c[Author] johansson c[Author]
trying2... trying...
27068317 2017 01 09 2022 04 09 2212-4411 121 5 2016 May Oral surgery, oral medicine, oral pathology and oral radiology Oral Surg Oral Med Oral Pathol Oral Radiol Comparison of the performance of intraoral X-ray sensors using objective image quality assessment. e129 e137 e129-37 10.1016/j.oooo.2016.01.016 S2212-4403(16)00039-0 The main aim of this study was to evaluate the performance of 10 individual sensors of the same make, using objective measures of key image quality parameters. A further aim was to compare 8 brands of sensors. Ten new sensors of 8 different models from 6 manufacturers (i.e., 80 sensors) were included in the study. All sensors were exposed in a standardized way using an X-ray tube voltage of 60 kVp and different exposure times. Sensor response, noise, low-contrast resolution, spatial resolution and uniformity were measured. Individual differences between sensors of the same brand were surprisingly large in some cases. There were clear differences in the characteristics of the different brands of sensors. The largest variations were found for individual sensor response for some of the brands studied. Also, noise level and low contrast resolution showed large variations between brands. Sensors, even of the same brand, vary significantly in their quality. It is thus valuable to establish action levels for the acceptance of newly delivered sensors and to use objective image quality control for commissioning purposes and periodic checks to ensure high performance of individual digital sensors. Copyright © 2016 Elsevier Inc. All rights reserved. Hellén-Halme Kristina K Department of Oral and Maxillofacial Radiology, Faculty of Odontology, Malmö University, Malmö, Sweden. Electronic address: Kristina.Hellen-Halme@mah.se. Johansson Curt C Department of Oral and Maxillofacial Radiology, Faculty of Odontology, Malmö University, Malmö, Sweden. Nilsson Mats M Department of Oral and Maxillofacial Radiology, Faculty of Odontology, Malmö University, Malmö, Sweden; Department of Radiation Physics, Skåne University Hospital, Malmö, Sweden. eng Comparative Study Journal Article 2016 02 13 United States Oral Surg Oral Med Oral Pathol Oral Radiol 101576782 IM Radiation Dosage Radiographic Image Enhancement instrumentation Radiography, Dental, Digital instrumentation Software X-Rays 2015 9 4 2015 12 15 2016 1 23 2016 4 13 6 0 2016 4 14 6 0 2017 1 10 6 0 ppublish 27068317 10.1016/j.oooo.2016.01.016 S2212-4403(16)00039-0 27015400 2019 09 04 2019 09 04 1933-0693 126 2 2017 Feb Journal of neurosurgery J Neurosurg Access to the brain parenchyma using endovascular techniques and a micro-working channel. 511 517 511-517 10.3171/2016.1.JNS152543 OBJECTIVE Several older studies report a low risk for parenchymal access to the CNS by surgical techniques. In more recent studies, including those with post-puncture CT scans, there are indications that the risk of bleeding might approach 8%. New therapies, such as those that use viral vectors, modified mRNA, or cell transplantation, will probably warrant more parenchymal access to the CNS. Other minimally invasive routes might then be tempting to explore. This study was designed in 2 parts to address the possibility of using the endovascular route. The first aim was to test the ability to create a parenchymal micro-working channel to the CNS in macaque monkeys through the vessel wall. Second, the biocompatibility of a device-associated, detached, distal securing plug that was made of nitinol was investigated in swine for 1 year. METHODS Trans-vessel wall intervention in the middle cerebral artery and associated cerebral parenchyma was performed in 4 rhesus macaque monkeys using a full clinical angiography suite. A contrast agent and methylene blue were injected to test the working channel and then detached at the distal end to act as a securing plug through the vessel wall. One-year follow-ups were also performed using angiography and histological analysis in 10 swine with 24 implants that were distributed in the external carotid artery tree. RESULTS The cerebral interventions were performed without acute bleeding. Both the contrast agent and methylene blue were infused into the brain parenchyma and subarachnoidal space via the endovascular micro-working channel (7 injections in 4 animals). In the 1-year follow-up period, the implant that was left in the external carotid vessel wall in the swine was covered by the endothelium, which was followed by dislodgement just outside the blood vessel with thin capsule formation. No stenosis in the artery was detected on 1-year angiography. The animals showed normal behavior and blood sample results during the follow-up period. This is the first histological demonstration of nitinol biocompatibility when the implant is positioned through an arterial wall and indicates that the trans-vessel wall technique is not comparable with stent placement and its ability to induce intimal hyperplasia and restenosis. CONCLUSIONS This study demonstrates that the trans-vessel wall technique is applicable to brain intervention in macaque monkeys, providing a micro-working channel for delivery or sampling. The long-term follow-up study of the detached device in swine showed no clinical or biochemical complications and a normal angiography appearance. Lundberg Johan J Department of Clinical Neuroscience, Karolinska Institutet. Department of Neuroradiology, Karolinska University Hospital, Stockholm. Johansson Carina B CB Department of Prosthodontics/Dental Materials, Science, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Sweden; and. Jonsson Stefan S Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, Sweden. Holmin Staffan S Department of Clinical Neuroscience, Karolinska Institutet. Department of Neuroradiology, Karolinska University Hospital, Stockholm. eng Journal Article 2016 03 25 United States J Neurosurg 0253357 0022-3085 0 Alloys 2EWL73IJ7F nitinol IM Alloys Animals Brain surgery Endovascular Procedures methods Macaca mulatta Middle Cerebral Artery surgery Parenchymal Tissue surgery Stents Swine ECA = external carotid artery endovascular macaque minimal invasive nitinol parenchymal puncture swine vascular disorders 2016 3 26 6 0 2019 9 5 6 0 2016 3 26 6 0 ppublish 27015400 10.3171/2016.1.JNS152543 26984258 2017 01 26 2022 03 18 1654-7209 45 5 2016 Sep Ambio Ambio Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. 516 537 516-37 10.1007/s13280-016-0770-0 Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region. Bokhorst Stef S 0000-0003-0184-1162 FRAM - High North Research Centre on Climate and the Environment, Norwegian Institute for Nature Research (NINA), PO Box 6606, Langnes, 9296, Tromsø, Norway. stefbokhorst@hotmail.com. Department of Ecological Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. stefbokhorst@hotmail.com. Pedersen Stine Højlund SH Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark. Brucker Ludovic L NASA GSFC Cryospheric Sciences Laboratory, Code 615, Greenbelt, MD, 20771, USA. Goddard Earth Sciences Technology and Research Studies and Investigations, Universities Space Research Association, Columbia, MD, 21044, USA. Anisimov Oleg O State Hydrological Institute of Roshydromet, 23 Second Line V.O., St.Petersburg, Russia, 199053. International Centre for Science and Education "Best", North-East Federal University, Yakutsk, Russia. Bjerke Jarle W JW FRAM - High North Research Centre on Climate and the Environment, Norwegian Institute for Nature Research (NINA), PO Box 6606, Langnes, 9296, Tromsø, Norway. Brown Ross D RD Climate Research Division, Environment Canada Ouranos, 550 Sherbrooke St. West, 19th Floor, Montreal, QC, H3A 1B9, Canada. Ehrich Dorothee D Department of Arctic and Marine Biology, University of Tromsø, 9037, Tromsø, Norway. Essery Richard L H RL School of GeoSciences, University of Edinburgh, Edinburgh, UK. Heilig Achim A Institute of Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany. Ingvander Susanne S Department of Physical Geography, Stockholm University, 106 91, Stockholm, Sweden. Johansson Cecilia C Department of Earth Sciences, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden. Johansson Margareta M Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62, Lund, Sweden. Royal Swedish Academy of Sciences, PO Box 50005, 104 05, Stockholm, Sweden. Jónsdóttir Ingibjörg Svala IS University Centre in Svalbard, PO Box 156, 9171, Longyearbyen, Norway. Faculty of Life- and Environmental Sciences, University of Iceland, Sturlugata 7, 101, Reykjavík, Iceland. Inga Niila N Leavas Sámi Community, Box 53, 981 21, Kiruna, Sweden. Luojus Kari K Arctic Research, Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland. Macelloni Giovanni G IFAC-CNR - Institute of Applied Physics "Nello Carrara", National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy. Mariash Heather H National Wildlife Research Centre, Environment Canada, 1125 Colonel By Drive, Ottawa, K1A 0H3, Canada. McLennan Donald D Canadian High Arctic Research Station (CHARS), 360 Albert Street, Suite 1710, Ottawa, ON, K1R 7X7, Canada. Rosqvist Gunhild Ninis GN Department of Physical Geography, Stockholm University, 106 91, Stockholm, Sweden. Department of Earth Sciences, University of Bergen, 5020, Bergen, Norway. Sato Atsushi A Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Prevention, 187-16 Suyoshi, Nagaoka, Niigata, 940-0821, Japan. Savela Hannele H Thule Insitute, University of Oulu, PO Box 7300, 90014, Oulu, Finland. Schneebeli Martin M WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland. Sokolov Aleksandr A Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Labytnangi, Russia, 629400. Science Center for Arctic Studies, State Organization of Yamal-Nenets Autonomous District, Salekhard, Russia. Sokratov Sergey A SA Arctic Environment Laboratory, Faculty of Geography, M.V. Lomonosov Moscow State University, Leninskie gory 1, Moscow, Russia, 119991. Terzago Silvia S Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), Corso Fiume 4, 10133, Turin, Italy. Vikhamar-Schuler Dagrun D Division for Model and Climate Analysis, R&D Department, The Norwegian Meteorological Institute, Postboks 43, Blindern, 0313, Oslo, Norway. Williamson Scott S Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg., Edmonton, AB, T6G 2E9, Canada. Qiu Yubao Y Institute of Remote Sensing and Digital Earth, Chinese Academic of Science, Beijing, 100094, China. Group on Earth Observations, Cold Regions Initiative, Geneva, Switzerland. Callaghan Terry V TV Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62, Lund, Sweden. Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK. National Research Tomsk Stated University, 36, Lenin Ave., Tomsk, Russia, 634050. eng Journal Article Review 2016 03 17 Sweden Ambio 0364220 0044-7447 IM Arctic Regions Cold Climate Ecosystem Environmental Monitoring economics methods Models, Theoretical Seasons Snow Climate change Ecosystem services Human health Indigenous Snow Societal costs 2015 10 29 2016 2 5 2015 11 3 2016 3 18 6 0 2016 3 18 6 0 2017 1 27 6 0 2016 3 17 ppublish 26984258 PMC4980315 10.1007/s13280-016-0770-0 10.1007/s13280-016-0770-0 Alou-Font E, Mundy CJ, Roy S, Gosselin M, Agusti S. Snow cover affects ice algal pigment composition in the coastal Arctic Ocean during spring. Marine Ecology Progress Series. 2013;474:89–104. doi: 10.3354/meps10107. 10.3354/meps10107 AMAP. 2011. Snow, water, Ice and Permafrost in the Arctic (SWIPA): Climate change and the cryosphere, xii–538. Oslo: Arctic Monitoring and Assessment Programme (AMAP). Aoki T, Matoba S, Yamaguchi S, et al. Light-absorbing snow impurity concentrations measured on Northwest Greenland ice sheet in 2011 and 2012. Bulletin of Glaciological Research. 2014;32:21–31. doi: 10.5331/bgr.32.21. 10.5331/bgr.32.21 Arctic-Council. 1996. Declaration on the establishment of the Arctic Council, 1–5. Ottawa: Arctic-Council. Arnaud L, Picard G, Champollion N, et al. Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: Instrument description and validation. Journal of Glaciology. 2011;57:17–29. doi: 10.3189/002214311795306664. 10.3189/002214311795306664 Ask J, Karlsson J, Persson L, Ask P, Byström P, Jansson M. Terrestrial organic matter and light penetration: Effects on bacterial and primary production in lakes. Limnology and Oceanography. 2009;54:2034–2040. doi: 10.4319/lo.2009.54.6.2034. 10.4319/lo.2009.54.6.2034 Avanzi F, Caruso M, Jommi C, De Michele C, Ghezzi A. Continuous-time monitoring of liquid water content in snowpacks using capacitance probes: A preliminary feasibility study. Advances in Water Resources. 2014;68:32–41. doi: 10.1016/j.advwatres.2014.02.012. 10.1016/j.advwatres.2014.02.012 Barichivich J, Briffa KR, Myneni RB, et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Global Change Biology. 2013;19:3167–3183. doi: 10.1111/gcb.12283. 10.1111/gcb.12283 23749553 Bartsch A, Kumpula T, Forbes BC, Stammler F. Detection of snow surface thawing and refreezing in the Eurasian Arctic with QuikSCAT: Implications for reindeer herding. Ecological Applications. 2010;20:2346–2358. doi: 10.1890/09-1927.1. 10.1890/09-1927.1 21265463 Bernard E, Friedt JM, Tolle F, Griselin M, Martin G, Laffly D, Marlin C. Monitoring seasonal snow dynamics using ground based high resolution photography (Austre Lovenbreen, Svalbard, 79°N) ISPRS Journal of Photogrammetry and Remote Sensing. 2013;75:92–100. doi: 10.1016/j.isprsjprs.2012.11.001. 10.1016/j.isprsjprs.2012.11.001 Biedunkiewicz A, Ejdys E. Icicles as carriers of yeast-like fungi potentially pathogenic to human. Aerobiologia. 2011;27:333–337. doi: 10.1007/s10453-011-9198-y. 10.1007/s10453-011-9198-y Bilodeau F, Gauthier G, Berteaux D. Effect of snow cover on the vulnerability of lemmings to mammalian predators in the Canadian Arctic. Journal of Mammalogy. 2013;94:813–819. doi: 10.1644/12-MAMM-A-260.1. 10.1644/12-MAMM-A-260.1 Bjerke JW, Karlsen SR, Høgda KA, et al. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environmental Research Letters. 2014;9:084006. doi: 10.1088/1748-9326/9/8/084006. 10.1088/1748-9326/9/8/084006 Bjerke JW, Tømmervik H, Zielke M, Jørgensen M. Impacts of snow season on ground-ice accumulation, soil frost and primary productivity in a grassland of sub-Arctic Norway. Environmental Research Letters. 2015;10:095007. doi: 10.1088/1748-9326/10/9/095007. 10.1088/1748-9326/10/9/095007 Bokhorst S, Bjerke JW, Davey M, et al. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiologia Plantarum. 2010;140:128–140. doi: 10.1111/j.1399-3054.2010.01386.x. 10.1111/j.1399-3054.2010.01386.x 20497369 Bokhorst S, Bjerke JW, Street L, Callaghan TV, Phoenix GK. Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Global Change Biology. 2011;17:2817–2830. doi: 10.1111/j.1365-2486.2011.02424.x. 10.1111/j.1365-2486.2011.02424.x Bokhorst S, Phoenix GK, Bjerke JW, Callaghan TV, Huyer-Brugman F, Berg MP. Extreme winter warming events more negatively impact small rather than large soil fauna: Shift in community composition explained by traits not taxa. Global Change Biology. 2012;18:1152–1162. doi: 10.1111/j.1365-2486.2011.02565.x. 10.1111/j.1365-2486.2011.02565.x Bokhorst S, Metcalfe DB, Wardle DA. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biology & Biochemistry. 2013;62:157–164. doi: 10.1016/j.soilbio.2013.03.016. 10.1016/j.soilbio.2013.03.016 Borzenkova AB, Shmakin AB. Changes in the snow cover thickness and of daily snowfall intensity affecting the highways cleaning expenses in Russian cities. Ice and Snow. 2012;2:59–70. Bougamont M, Bamber JL, Ridley JK, et al. Impact of model physics on estimating the surface mass balance of the Greenland ice sheet. Geophysical Research Letters. 2007 Bowden JJ, Eskildsen A, Hansen RR, Olsen K, Kurle CM, Høye TT. High-Arctic butterflies become smaller with rising temperatures. Biology Letters. 2015;11:20150574. doi: 10.1098/rsbl.2015.0574. 10.1098/rsbl.2015.0574 PMC4650173 26445981 Brown LC, Duguay CR. The response and role of ice cover in lake–climate interactions. Progress in Physical Geography. 2010;34:671–704. doi: 10.1177/0309133310375653. 10.1177/0309133310375653 Brucker L, Markus T. Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data. Journal of Geophysical Research-Oceans. 2013;118:2892–2905. doi: 10.1002/jgrc.20228. 10.1002/jgrc.20228 Brucker L, Royer A, Picard G, Langlois A, Fily M. Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution–emission model. Remote Sensing of Environment. 2011;115:1966–1977. doi: 10.1016/j.rse.2011.03.019. 10.1016/j.rse.2011.03.019 Brun E, Vionnet V, Boone A, et al. Simulation of northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. Journal of Hydrometeorology. 2013;14:203–219. doi: 10.1175/JHM-D-12-012.1. 10.1175/JHM-D-12-012.1 Brutel-Vuilmet C, Ménégoz M, Krinner G. An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. The Cryosphere. 2013;7:67–80. doi: 10.5194/tc-7-67-2013. 10.5194/tc-7-67-2013 Bulygina ON, Groisman PY, Razuvaev VN, Radionov VF. Snow cover basal ice layer changes over Northern Eurasia since 1966. Environmental Research Letters. 2010;5:015004. doi: 10.1088/1748-9326/5/1/015004. 10.1088/1748-9326/5/1/015004 Caduff R, Wiesmann A, Bühler Y, Pielmeier C. Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry. Geophysical Research Letters. 2015;42:813–820. doi: 10.1002/2014GL062442. 10.1002/2014GL062442 Callaghan T, Johansson M, Brown R, et al. The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio. 2011;40:17–31. doi: 10.1007/s13280-011-0212-y. 10.1007/s13280-011-0212-y Carmagnola CM, Morin S, Lafaysse M, et al. Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model. The Cryosphere. 2014;8:417–437. doi: 10.5194/tc-8-417-2014. 10.5194/tc-8-417-2014 Cavalieri DJ, Markus T, Ivanoff A, et al. A comparison of snow depth on sea ice retrievals using airborne altimeters and an AMSR-E simulator. IEEE Transactions on Geoscience and Remote Sensing. 2012;50:3027–3040. doi: 10.1109/TGRS.2011.2180535. 10.1109/TGRS.2011.2180535 Cheng B, Vihma T, Rontu L, Kontu A, Pour HK, Duguay C, Pulliainen J. Evolution of snow and ice temperature, thickness and energy balance in Lake Orajärvi, northern Finland. Tellus A. 2014 Clarke GKC, Jarosch AH, Anslow FS, Radic V, Menounos B. Projected deglaciation of western Canada in the twenty-first century. Nature Geoscience. 2015;8:372–377. doi: 10.1038/ngeo2407. 10.1038/ngeo2407 Cohen J, Jones J, Furtado JC, Tziperman E. Warm Arctic, cold continents a common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography. 2013;26:152–160. doi: 10.5670/oceanog.2013.70. 10.5670/oceanog.2013.70 Cohen J, Furtado JC, Jones J, Barlow M, Whittleston D, Entekhabi D. Linking Siberian snow cover to precursors of stratospheric variability. Journal of Climate. 2014;27:5422–5432. doi: 10.1175/JCLI-D-13-00779.1. 10.1175/JCLI-D-13-00779.1 Cooper EJ. Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annual Review of Ecology Evolution and Systematics. 2014;45:271–295. doi: 10.1146/annurev-ecolsys-120213-091620. 10.1146/annurev-ecolsys-120213-091620 Crook JA, Forster PM, Stuber N. Spatial patterns of modeled climate feedback and contributions to temperature response and Polar amplification. Journal of Climate. 2011;24:3575–3592. doi: 10.1175/2011JCLI3863.1. 10.1175/2011JCLI3863.1 Deems JS, Painter TH, Finnegan DC. Lidar measurement of snow depth: A review. Journal of Glaciology. 2013;59:467–479. doi: 10.3189/2013JoG12J154. 10.3189/2013JoG12J154 Denoth A. An electronic devise for long-term snow wetness recording. Annals of Glaciology. 1994;19:104–106. Derksen C, Brown R, Mudryk L, Luojus K. Arctic: Terrestrial Snow. State of the Climate in 2014. J. Blunden and D. S. Arndt. Bulletin of the American Meteorological Society. 2015;96:133–135. Dibike Y, Prowse T, Bonsal B, de Rham L, Saloranta T. Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions. International Journal of Climatology. 2012;32:695–709. doi: 10.1002/joc.2300. 10.1002/joc.2300 Doherty SJ, Grenfell TC, Forsstrom S, Hegg DL, Brandt RE, Warren SG. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. Journal of Geophysical Research—Atmospheres. 2013;118:5553–5569. doi: 10.1002/jgrd.50235. 10.1002/jgrd.50235 Domine F, Albert M, Huthwelker T, et al. Snow physics as relevant to snow photochemistry. Atmospheric Chemistry and Physics. 2008;8:171–208. doi: 10.5194/acp-8-171-2008. 10.5194/acp-8-171-2008 Douglas TA, Loseto LL, Macdonald RW, et al. The fate of mercury in Arctic terrestrial and aquatic ecosystems: A review. Environmental Chemistry. 2012;9:321–355. doi: 10.1071/EN11140. 10.1071/EN11140 Duguay CR, Bernier M, Gauthier Y, Kouraev A. Remote sensing of lake and river ice. In: Tedesco M, editor. Remote sensing of the cryosphere. Oxford: Wiley-Blackwell; 2015. pp. 273–306. Dumont M, Brun E, Picard G, et al. Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nature Geoscience. 2014;7:509–512. doi: 10.1038/ngeo2180. 10.1038/ngeo2180 Dupuis AP, Hann BJ. Climate change, diapause termination and zooplankton population dynamics: An experimental and modelling approach. Freshwater Biology. 2009;54:221–235. doi: 10.1111/j.1365-2427.2008.02103.x. 10.1111/j.1365-2427.2008.02103.x Dutra E, Balsamo G, Viterbo P, Miranda PMA, Beljaars A, Schär C, Elder K. An improved snow scheme for the ECMWF land surface model: Description and offline validation. Journal of Hydrometeorology. 2010;11:899–916. doi: 10.1175/2010JHM1249.1. 10.1175/2010JHM1249.1 Eckerstorfer M, Christiansen HH. Meteorology, topography and snowpack conditions causing two extreme mid-winter slush and wet slab avalanche periods in high Arctic maritime Svalbard. Permafrost and Periglacial Processes. 2012;23:15–25. doi: 10.1002/ppp.734. 10.1002/ppp.734 Eira IMG, Jaedicke C, Magga OH, Maynard NG, Vikhamar-Schuler D, Mathiesen SD. Traditional Sami snow terminology and physical snow classification—Two ways of knowing. Cold Regions Science and Technology. 2013;85:117–130. doi: 10.1016/j.coldregions.2012.09.004. 10.1016/j.coldregions.2012.09.004 Ejdys E, Biedunkiewicz A, Dynowska M, Sucharzewska E. Snow in the city as a spore bank of potentially pathogenic fungi. Science of the Total Environment. 2014;470:646–650. doi: 10.1016/j.scitotenv.2013.10.045. 10.1016/j.scitotenv.2013.10.045 24176713 Essery R. Large-scale simulations of snow albedo masking by forests. Geophysical Research Letters. 2013;40:5521–5525. doi: 10.1002/grl.51008. 10.1002/grl.51008 Essery R, Morin S, Lejeune Y, Ménard CB. A comparison of 1701 snow models using observations from an alpine site. Advances in Water Resources. 2013;55:131–148. doi: 10.1016/j.advwatres.2012.07.013. 10.1016/j.advwatres.2012.07.013 Fiddes J, Gruber S. TopoSCALE v. 1.0: Downscaling gridded climate data in complex terrain. Geoscientific Model Development. 2014;7:387–405. doi: 10.5194/gmd-7-387-2014. 10.5194/gmd-7-387-2014 Fierz, C.R., R.L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D.M. McClung, K. Nishimura, P.K. Satyawali, and S.A. Sokratov. 2009. The international classification for seasonal snow on the ground. Paper presented at the UNESCO-IHP, Paris, France. Fletcher CG, Thackeray CW, Burgers TM. Evaluating biases in simulated snow albedo feedback in two generations of climate models. Journal of Geophysical Research—Atmospheres. 2015;120:12–26. doi: 10.1002/2014JD022546. 10.1002/2014JD022546 Francis JA, Vavrus SJ. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters. 2012;39:L06801. doi: 10.1029/2012GL051000. 10.1029/2012GL051000 Fuller MC, Geldsetzer T, Yackel JJ. Surface-based polarimetric C-band microwave scatterometer measurements of snow during a Chinook event. IEEE Transactions on Geoscience and Remote Sensing. 2009;47:1766–1776. doi: 10.1109/TGRS.2008.2006684. 10.1109/TGRS.2008.2006684 Gallet JC, Domine F, Zender CS, Picard G. Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. Cryosphere. 2009;3:167–182. doi: 10.5194/tc-3-167-2009. 10.5194/tc-3-167-2009 Hachikubo A, Yamaguchi S, Arakawa H, et al. Effects of temperature and grain type on time variation of snow specific surface area. Bulletin of Glaciological Research. 2014;32(1):33–45. Hall, D.K., G.A. Riggs, and V.V. Salomonson. 2006. MODIS snow and sea ice products. In Earth science satellite remote sensing, vol. I: Science and Instruments, ed. J.J. Qu, W. Gao, M. Kafatos, R.E. Murphy, and V.V. Salomonson, 154–181. New York: Springer. Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ. MODIS snow-cover products. Remote Sensing of Environment. 2002;83:181–194. doi: 10.1016/S0034-4257(02)00095-0. 10.1016/S0034-4257(02)00095-0 Hanbali RM. Economic impact of winter road maintenance on road users. Transportation Research Record. 1994;1442:151–161. Hanewinkel M, Hummel S, Albrecht A. Assessing natural hazards in forestry for risk management: A review. European Journal of Forest Research. 2011;130:329–351. doi: 10.1007/s10342-010-0392-1. 10.1007/s10342-010-0392-1 Hansen BB, Grøtan V, Aanes R, et al. Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic. Science. 2013;339:313–315. doi: 10.1126/science.1226766. 10.1126/science.1226766 23329044 Hansen BB, Isaksen K, Benestad RE, et al. Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environmental Research Letters. 2014;9:114021. doi: 10.1088/1748-9326/9/11/114021. 10.1088/1748-9326/9/11/114021 Havens S, Marshall H-P, Johnson JB, Nicholson B. Calculating the velocity of a fast-moving snow avalanche using an infrasound array. Geophysical Research Letters. 2014;41:6191–6198. doi: 10.1002/2014GL061254. 10.1002/2014GL061254 Haynes KM, Mitchell CPJ. Inter-annual and spatial variability in hillslope runoff and mercury flux during spring snowmelt. Journal of Environmental Monitoring. 2012;14:2083–2091. doi: 10.1039/c2em30267e. 10.1039/c2em30267e 22739974 Heilig A, Schneebeli M, Eisen O. Upward-looking ground-penetrating radar for monitoring snowpack stratigraphy. Cold Regions Science and Technology. 2009;59:152–162. doi: 10.1016/j.coldregions.2009.07.008. 10.1016/j.coldregions.2009.07.008 Heilig A, Mitterer C, Schmid L, Wever N, Schweizer J, Marshall HP, Eisen O. Seasonal and diurnal cycles of liquid water in snow—Measurements and modeling. Journal of Geophysical Research: Earth Surface. 2015 Holemann JA, Schirmacher M, Prange A. Seasonal variability of trace metals in the Lena River and the southeastern Laptev Sea: Impact of the spring freshet. Global and Planetary Change. 2005;48:112–125. doi: 10.1016/j.gloplacha.2004.12.008. 10.1016/j.gloplacha.2004.12.008 Hori M, Aoki T, Tanikawa T, Kuchiki K, Niwano M, Yamaguchi S, Matoba S. Dependence of thermal infrared emissive behaviors of snow cover on the surface snow type. Bulletin of Glaciological Research. 2014;32:33–45. doi: 10.5331/bgr.32.33. 10.5331/bgr.32.33 Ims RA, Yoccoz NG, Killengreen ST. Determinants of lemming outbreaks. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:1970–1974. doi: 10.1073/pnas.1012714108. 10.1073/pnas.1012714108 PMC3033251 21245340 Jeelani G, Feddema JJ, van der Veen CJ, Stearns L. Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate. Water Resources Research. 2012;48:W12508. doi: 10.1029/2011WR011590. 10.1029/2011WR011590 Jiao C, Flanner MG, Balkanski Y, et al. An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmospheric Chemistry and Physics. 2014;14:2399–2417. doi: 10.5194/acp-14-2399-2014. 10.5194/acp-14-2399-2014 Johansson C, Pohjola VA, Jonasson C, Callaghan TV. Multi-decadal changes in snow characteristics in sub-Arctic Sweden. Ambio. 2011;40:566–574. doi: 10.1007/s13280-011-0164-2. 10.1007/s13280-011-0164-2 PMC3357863 21954720 Johansson M, Jonasson C, Sonesson M, Christensen TR. The man, the myth, the legend: Professor Terry V. Callaghan and his 3M concept. Ambio. 2012;41:175–177. doi: 10.1007/s13280-012-0300-7. 10.1007/s13280-012-0300-7 PMC3535064 22864691 Kapnick SB, Delworth TL. Controls of global snow under a changed climate. Journal of Climate. 2013;26:5537–5562. doi: 10.1175/JCLI-D-12-00528.1. 10.1175/JCLI-D-12-00528.1 Kelly R. The AMSR-E snow depth algorithm: Description and initial results. Journal of The Remote Sensing Society of Japan. 2009;29:307–317. Koch F, Prasch M, Schmid L, Schweizer J, Mauser W. Measuring snow liquid water content with low-cost GPS receivers. Sensors. 2014;14:20975–20999. doi: 10.3390/s141120975. 10.3390/s141120975 PMC4279521 25384007 Koven CD, Riley WJ, Stern A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models. Journal of Climate. 2013;26:1877–1900. doi: 10.1175/JCLI-D-12-00228.1. 10.1175/JCLI-D-12-00228.1 Krenke AN, Cherenkova EA, Chernavskaya MM. Stability of snow cover on the territory of Russia in relation to climate change. Ice and Snow. 2012;1:29–37. Kuipers Munneke P, van den Broeke MR, Lenaerts JTM, Flanner MG, Gardner AS, van de Berg WJ. A new albedo parameterization for use in climate models over the Antarctic ice sheet. Journal of Geophysical Research: Atmospheres. 2011 Kumar M, Marks D, Dozier J, Reba M, Winstral A. Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models. Advances in Water Resources. 2013;56:77–89. doi: 10.1016/j.advwatres.2013.03.006. 10.1016/j.advwatres.2013.03.006 Kurtz N, Richter-Menge J, Farrell S, Studinger M, Paden J, Sonntag J, Yungel J. IceBridge airborne survey data support Arctic sea ice predictions. Eos, Transactions American Geophysical Union. 2013;94:41–41. doi: 10.1002/2013EO040001. 10.1002/2013EO040001 Langford H, Hodson A, Banwart S, Boggild C. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology. 2010;51:87–94. doi: 10.3189/172756411795932083. 10.3189/172756411795932083 Lawrence DM, Swenson SC. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environmental Research Letters. 2011;6:045504. doi: 10.1088/1748-9326/6/4/045504. 10.1088/1748-9326/6/4/045504 Leinss S, Parrella G, Hajnsek I. Snow height determination by polarimetric phase differences in X-Band SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2014;7:3794–3810. doi: 10.1109/JSTARS.2014.2323199. 10.1109/JSTARS.2014.2323199 Liston GE, Hiemstra CA. The changing cryosphere: Pan-Arctic snow trends (1979–2009) Journal of Climate. 2011;24:5691–5712. doi: 10.1175/JCLI-D-11-00081.1. 10.1175/JCLI-D-11-00081.1 Lund-Hansen L, Hawes I, Sorrell B, Nielsen M. Removal of snow cover inhibits spring growth of Arctic ice algae through physiological and behavioral effects. Polar Biology. 2014;37:471–481. doi: 10.1007/s00300-013-1444-z. 10.1007/s00300-013-1444-z Lutz S, Anesio AM, Villar SEJ, Benning LG. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiology Ecology. 2014;89:402–414. doi: 10.1111/1574-6941.12351. 10.1111/1574-6941.12351 24920320 Marks D, Winstral A, Reba M, Pomeroy J, Kumar M. An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Advances in Water Resources. 2013;55:98–110. doi: 10.1016/j.advwatres.2012.11.012. 10.1016/j.advwatres.2012.11.012 Marshall H-P, Koh G, Forster RR. Estimating alpine snowpack properties using FMCW radar. Annals of Glaciology. 2005;40:157–162. doi: 10.3189/172756405781813500. 10.3189/172756405781813500 Matsumoto N, Hoshino T. Fungi in snow environments: psychrophilic molds—A group of pathogens affecting plants under snow. Enfield: Science Publishers Inc; 2009. Matsumura S, Zhang X, Yamazaki K. Summer Arctic atmospheric circulation response to spring Eurasian snow cover and its possible linkage to accelerated sea ice decrease. Journal of Climate. 2014;27:6551–6558. doi: 10.1175/JCLI-D-13-00549.1. 10.1175/JCLI-D-13-00549.1 Matzl M, Schneebeli M. Measuring specific surface area of snow by near-infrared photography. Journal of Glaciology. 2006;52:558–564. doi: 10.3189/172756506781828412. 10.3189/172756506781828412 McCreight JL, Small EE, Larson KM. Snow depth, density, and SWE estimates derived from GPS reflection data: Validation in the western U.S. Water Resources Research. 2014;50:6892–6909. doi: 10.1002/2014WR015561. 10.1002/2014WR015561 McKinnon L, Berteaux D, Gauthier G, Bêty J. Predator-mediated interactions between preferred, alternative and incidental prey in the arctic tundra. Oikos. 2013;122:1042–1048. doi: 10.1111/j.1600-0706.2012.20708.x. 10.1111/j.1600-0706.2012.20708.x Meltofte, H. 2013. Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Akureyri: Conservation of Arctic Flora and Fauna. Menard CB, Essery R, Pomeroy J. Modelled sensitivity of the snow regime to topography, shrub fraction and shrub height. Hydrology and Earth System Sciences. 2014;18:2375–2392. doi: 10.5194/hess-18-2375-2014. 10.5194/hess-18-2375-2014 Michel D, Philipona R, Ruckstuhl C, Vogt R, Vuilleumier L. Performance and uncertainty of CNR1 net radiometers during a one-year field comparison. Journal of Atmospheric and Oceanic Technology. 2008;25:442–451. doi: 10.1175/2007JTECHA973.1. 10.1175/2007JTECHA973.1 Mitterer C, Heilig A, Schweizer J, Eisen O. Upwardlooking ground-penetrating radar for measuring wet-snow properties. Cold Regions Science and Technology. 2011;69:129–138. doi: 10.1016/j.coldregions.2011.06.003. 10.1016/j.coldregions.2011.06.003 Mizukami N, Koren V, Smith M, Kingsmill D, Zhang Z, Cosgrove B, Cui Z. The impact of precipitation type discrimination on hydrologic simulation: Rain–snow partitioning derived from HMT-West radar-detected brightband height versus surface temperature data. Journal of Hydrometeorology. 2013;14:1139–1158. doi: 10.1175/JHM-D-12-035.1. 10.1175/JHM-D-12-035.1 Montpetit B, Royer A, Langlois A, et al. New shortwave infrared albedo measurements for snow specific surface area retrieval. Journal of Glaciology. 2012;58:941–952. doi: 10.3189/2012JoG11J248. 10.3189/2012JoG11J248 Mudryk LR, Derksen C, Kushner PJ, Brown R. Characterization of northern hemisphere snow water equivalent datasets, 1981–2010. Journal of Climate. 2015;28:8037–8051. doi: 10.1175/JCLI-D-15-0229.1. 10.1175/JCLI-D-15-0229.1 Myers-Smith IH, Hik DS. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow–shrub interactions. Ecology and Evolution. 2013;3:3683–3700. doi: 10.1002/ece3.710. 10.1002/ece3.710 PMC3810868 24198933 Myers-Smith IH, Forbes BC, Wilmking M, et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters. 2011;6:045509. doi: 10.1088/1748-9326/6/4/045509. 10.1088/1748-9326/6/4/045509 Niemi, J., and J. Ahlstedt. 2012. Finnish agriculture and rural industries, 112a. Helsinki: Agrifood Research. Nolet BA, Bauer S, Feige N, Kokorev YI, Popov IY, Ebbinge BS. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. Journal of Animal Ecology. 2013;82:804–813. doi: 10.1111/1365-2656.12060. 10.1111/1365-2656.12060 PMC3744762 23419215 Oleson, K.W., D.M. Lawrence, B. Gordon, et al. 2010. Technical description of version 4.0 of the community land model (CLM). NCAR Technical Notes. Panzer B, Gomez-Garcia D, Leuschen C, et al. An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn. Journal of Glaciology. 2013;59:244–254. doi: 10.3189/2013JoG12J128. 10.3189/2013JoG12J128 Parham PE, Waldock J, Christophides GK, et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2015;370:20130557. doi: 10.1098/rstb.2013.0557. 10.1098/rstb.2013.0557 PMC4342957 25688012 Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, Goetz SJ. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change. 2013;3:673–677. doi: 10.1038/nclimate1858. 10.1038/nclimate1858 Pedersen SH, Liston GE, Tamstorf MP, Westergaard-Nielsen A, Schmidt NM. Quantifying episodic snowmelt events in Arctic ecosystems. Ecosystems. 2015;18:839–856. doi: 10.1007/s10021-015-9867-8. 10.1007/s10021-015-9867-8 Picard G, Royer A, Arnaud L, Fily M. Influence of meter-scale wind-formed features on the variability of the microwave brightness temperature around Dome C in Antarctica. The Cryosphere. 2014;8:1105–1119. doi: 10.5194/tc-8-1105-2014. 10.5194/tc-8-1105-2014 Pinzer BR, Schneebeli M, Kaempfer TU. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography. Cryosphere. 2012;6:1141–1155. doi: 10.5194/tc-6-1141-2012. 10.5194/tc-6-1141-2012 Popova VV. The snow storage contribution in major changes of river runoff in the Arctic Ocean drainage basin during the current warming period. Ice and Snow. 2011;51:69–78. Preece C, Callaghan TV, Phoenix GK. Impacts of winter icing events on the growth, phenology and physiology of sub-arctic dwarf shrubs. Physiologia Plantarum. 2012 22568724 Proksch M, Löwe H, Schneebeli M. Density, specific surface area, and correlation length of snow measured by high-resolution penetrometry. Journal of Geophysical Research: Earth Surface. 2015;120:346–362. Prowse TD, Brown K. Hydro-ecological effects of changing Arctic river and lake ice covers: A review. Hydrological Research. 2010;41:454–461. doi: 10.2166/nh.2010.142. 10.2166/nh.2010.142 Prowse T, Alfredsen K, Beltaos S, et al. Past and future changes in Arctic lake and river ice. Ambio. 2011;40:53–62. doi: 10.1007/s13280-011-0216-7. 10.1007/s13280-011-0216-7 Qian Y, Yasunari TJ, Doherty SJ, et al. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences. 2015;32:64–91. doi: 10.1007/s00376-014-0010-0. 10.1007/s00376-014-0010-0 Qiu J. Avalanche hotspot revealed. Nature. 2014;509:142–143. doi: 10.1038/509142a. 10.1038/509142a 24805323 Qu X, Hall A. On the persistent spread in snow-albedo feedback. Climate Dynamics. 2014;42:69–81. doi: 10.1007/s00382-013-1774-0. 10.1007/s00382-013-1774-0 Rautio M, Mariash H, Forsström L. Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake. Limnology and Oceanography. 2011;56:1513–1524. doi: 10.4319/lo.2011.56.4.1513. 10.4319/lo.2011.56.4.1513 Reiweger I, Mayer K, Steiner K, Dual J, Schweizer J. Measuring and localizing acoustic emission events in snow prior to fracture. Cold Regions Science and Technology. 2015;110:160–169. doi: 10.1016/j.coldregions.2014.12.002. 10.1016/j.coldregions.2014.12.002 Rennert KJ, Roe G, Putkonen J, Bitz CM. Soil thermal and ecological impacts of rain on snow events in the circumpolar Arctic. Journal of Climate. 2009;22:2302–2315. doi: 10.1175/2008JCLI2117.1. 10.1175/2008JCLI2117.1 Riehm M, Nordin L. Optimization of winter road maintenance energy costs in Sweden: A critique of site specific frost warning techniques. Meteorological Applications. 2012;19:443–453. doi: 10.1002/met.275. 10.1002/met.275 Riseth JA, Tømmervik H, Helander-Renvall E, et al. Sámi traditional ecological knowledge as a guide to science: Snow, ice and reindeer pasture facing climate change. Polar Record. 2011;47:202–217. doi: 10.1017/S0032247410000434. 10.1017/S0032247410000434 Rouse WR, Blanken PD, Duguay CR, Oswald CJ, Schertzer WM. Climate lake interactions. In: Woo MK, editor. Cold region atmospheric and hydrologic studies: The Mackenzie GEWEX experience. Berlin: Springer; 2008. pp. 139–160. Roy A, Picard G, Royer A, et al. Brightness temperature simulations of the Canadian seasonal snowpack driven by measurements of the snow specific surface area. IEEE Transactions on Geoscience and Remote Sensing. 2013;51:4692–4704. doi: 10.1109/TGRS.2012.2235842. 10.1109/TGRS.2012.2235842 Rumpf SB, Semenchuk PR, Dullinger S, Cooper EJ. Idiosyncratic responses of high Arctic plants to changing snow regimes. PLoS ONE. 2014;9:10. doi: 10.1371/journal.pone.0086281. 10.1371/journal.pone.0086281 PMC3921108 24523859 Saloranta TM. Simulating snow maps for Norway: Description and statistical evaluation of the seNorge snow model. The Cryosphere. 2012;6:1323–1337. doi: 10.5194/tc-6-1323-2012. 10.5194/tc-6-1323-2012 Schmid L, Heilig A, Mitterer C, Schweizer J, Maurer H, Okorn R, Eisen O. Continuous snowpack monitoring using upward-looking ground-penetrating radar technology. Journal of Glaciology. 2014;60:509–525. doi: 10.3189/2014JoG13J084. 10.3189/2014JoG13J084 Schmidt NM, Ims RA, Høye TT, et al. Response of an arctic predator guild to collapsing lemming cycles. Proceedings of the Royal Society B—Biological Sciences. 2012;279:4417–4422. doi: 10.1098/rspb.2012.1490. 10.1098/rspb.2012.1490 PMC3479802 22977153 Schneebeli M, Johnson JB. A constant-speed penetrometer for high-resolution snow stratigraphy. Annals of Glaciology. 1998;26:107–111. Screen JA. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Climate Change. 2014;4:577–582. doi: 10.1038/nclimate2268. 10.1038/nclimate2268 Screen JA, Simmonds I. Declining summer snowfall in the Arctic: Causes, impacts and feedbacks. Climate Dynamics. 2012;38:2243–2256. doi: 10.1007/s00382-011-1105-2. 10.1007/s00382-011-1105-2 Semenchuk PR, Elberling B, Cooper EJ. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecology and Evolution. 2013;3:2586–2599. doi: 10.1002/ece3.648. 10.1002/ece3.648 PMC3930050 24567826 Semenov VA. Climate-related change of snow contribution in the development of dangerous hydrological phenomena on rivers. Ice and Snow. 2013;53:107–112. Semmens KA, Ramage J, Bartsch A, Liston GE. Early snowmelt events: Detection, distribution, and significance in a major sub-arctic watershed. Environmental Research Letters. 2013;8:11. doi: 10.1088/1748-9326/8/1/014020. 10.1088/1748-9326/8/1/014020 Serreze MC, Barry RG. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change. 2011;77:85–96. doi: 10.1016/j.gloplacha.2011.03.004. 10.1016/j.gloplacha.2011.03.004 Shen FX, Yao MS. Are we biologically safe with snow precipitation? A case study in Beijing. PLoS ONE. 2013;8:11. doi: 10.1371/annotation/e2536fcb-3ab3-44a0-8eab-91aaeb8e49b6. 10.1371/annotation/e2536fcb-3ab3-44a0-8eab-91aaeb8e49b6 PMC3675146 23762327 Shnyparkov A, Fuchs S, Sokratov S, Koltermann K, Seliverstov YG, Vikulina M. Theory and practice of individual snow avalanche risk assessment in the Russian Arctic. Geography, Environment, Sustainability. 2012;5:64–81. doi: 10.15356/2071-9388_03v05_2012_05. 10.15356/2071-9388_03v05_2012_05 Sihvola A, Tiuri M. Snow fork for field determination of the density and wetness profiles of a snow pack. IEEE Transactions on Geoscience and Remote Sensing. 1986;GE-24:717–721. doi: 10.1109/TGRS.1986.289619. 10.1109/TGRS.1986.289619 Simon A, Poulin MB, Rousseau AN, Ogden NH. Fate and transport of Toxoplasma gondii Oocysts in seasonally snow covered watersheds: A conceptual framework from a melting snowpack to the Canadian Arctic coasts. International Journal of Environmental Research and Public Health. 2013;10:994–1005. doi: 10.3390/ijerph10030994. 10.3390/ijerph10030994 PMC3709299 23478399 Slater AG, Lawrence DM. Diagnosing present and future permafrost from climate models. Journal of Climate. 2013;26:5608–5623. doi: 10.1175/JCLI-D-12-00341.1. 10.1175/JCLI-D-12-00341.1 Sosnovsky AV, Nakalov PR, Nenashev SV. Physical-geographical aspects of formation of artificial firn-ice massives. Ice and Snow. 2014;54:113–119. Stacheder M. TDR and low-frequency measurements for continuous monitoring of moisture and density in a snow pack. International Agrophysics. 2005;19:75–78. Steffen K, Nghiem SV, Huff R, Neumann G. The melt anomaly of 2002 on the Greenland Ice Sheet from active and passive microwave satellite observations. Geophysical Research Letters. 2004 Stien A, Ims RA, Albon SD, et al. Congruent responses to weather variability in high arctic herbivores. Biology Letters. 2012;8:1002–1005. doi: 10.1098/rsbl.2012.0764. 10.1098/rsbl.2012.0764 PMC3497145 23015455 Sturm M, Maslanik JA, Perovich DK, Stroeve JC, Richter-Menge J, Markus T, Holmgren J, Heinrichs JF, Tape K. Snow depth and ice thickness measurements from the Beaufort and Chukchi seas collected during the AMSR-Ice03 campaign. IEEE Transactions on Geoscience and Remote Sensing. 2006;44:3009–3020. doi: 10.1109/TGRS.2006.878236. 10.1109/TGRS.2006.878236 Surdu CM, Duguay CR, Brown LC, Fernández Prieto D. Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): Radar remote-sensing and numerical modeling data analysis. The Cryosphere. 2014;8:167–180. doi: 10.5194/tc-8-167-2014. 10.5194/tc-8-167-2014 Takala M, Luojus K, Pulliainen J, et al. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment. 2011;115:3517–3529. doi: 10.1016/j.rse.2011.08.014. 10.1016/j.rse.2011.08.014 Tang Q, Zhang X, Yang X, Francis JA. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters. 2013;8:014036. doi: 10.1088/1748-9326/8/1/014036. 10.1088/1748-9326/8/1/014036 Tedesco M, Fettweis X, Mote T, Wahr J, Alexander P, Box JE, Wouters B. Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere. 2013;7:615–630. doi: 10.5194/tc-7-615-2013. 10.5194/tc-7-615-2013 Terzago S, von Hardenberg J, Palazzi E, Provenzale A. Snowpack changes in the Hindu Kush-Karakoram-Himalaya from CMIP5 global climate models. Journal of Hydrometeorology. 2014;15:2293–2313. doi: 10.1175/JHM-D-13-0196.1. 10.1175/JHM-D-13-0196.1 Thackeray CW, Fletcher CG, Derksen C. The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. Journal of Geophysical Research: Atmospheres. 2014;119:9810–9821. Urban M, Forkel M, Eberle J, Huettich C, Schmullius C, Herold M. Pan-Arctic climate and land cover trends derived from multi-variate and multi-scale analyses (1981–2012) Remote Sensing. 2014;6:2296–2316. doi: 10.3390/rs6032296. 10.3390/rs6032296 Van Den Broeke M, Bus C, Ettema J, Smeets P. Temperature thresholds for degree-day modelling of Greenland ice sheet melt rates. Geophysical Research Letters. 2010;37:L18501. Van Herwijnen A, Schweizer J. Seismic sensor array for monitoring an avalanche start zone: Design, deployment and preliminary results. Journal of Glaciology. 2011;57:267–276. doi: 10.3189/002214311796405933. 10.3189/002214311796405933 Vikhamar-Schuler D, Hanssen-Bauer I, Schuler TV, Mathiesen SD, Lehning M. Use of a multilayer snow model to assess grazing conditions for reindeer. Annals of Glaciology. 2013;54:214–226. doi: 10.3189/2013AoG62A306. 10.3189/2013AoG62A306 Vionnet V, Brun E, Morin S, et al. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geoscientific Model Development. 2012;5:773–791. doi: 10.5194/gmd-5-773-2012. 10.5194/gmd-5-773-2012 Walsh JE. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary Change. 2014;117:52–63. doi: 10.1016/j.gloplacha.2014.03.003. 10.1016/j.gloplacha.2014.03.003 Webster MA, Rigor IG, Nghiem SV, Kurtz NT, Farrell SL, Perovich DK, Sturm M. Interdecadal changes in snow depth on Arctic sea ice. Journal of Geophysical Research-Oceans. 2014;119:5395–5406. doi: 10.1002/2014JC009985. 10.1002/2014JC009985 Wever N, Fierz C, Mitterer C, Hirashima H, Lehning M. Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model. The Cryosphere. 2014;8:257–274. doi: 10.5194/tc-8-257-2014. 10.5194/tc-8-257-2014 Wilson RR, Bartsch A, Joly K, Reynolds JH, Orlando A, Loya WM. Frequency, timing, extent, and size of winter thaw-refreeze events in Alaska 2001–2008 detected by remotely sensed microwave backscatter data. Polar Biology. 2013;36:419–426. doi: 10.1007/s00300-012-1272-6. 10.1007/s00300-012-1272-6 26927139 2016 10 17 2018 12 02 1660-4601 13 3 2016 Feb 24 International journal of environmental research and public health Int J Environ Res Public Health The Use of Carbonaceous Particle Exposure Metrics in Health Impact Calculations. 249 10.3390/ijerph13030249 Combustion-related carbonaceous particles seem to be a better indicator of adverse health effects compared to PM2.5 and PM10. Historical studies are based on black smoke (BS), but more recent studies use absorbance (Abs), black carbon (BC) or elemental carbon (EC) as exposure indicators. To estimate health risks based on BS, we review the literature regarding the relationship between Abs, BS, BC and EC. We also discuss the uncertainties associated with the comparison of relative risks (RRs) based on these conversions. EC is reported to represent a proportion between 5.2% and 27% of BS with a mean value of 12%. Correlations of different metrics at one particular site are higher than when different sites are compared. Comparing all traffic, urban and rural sites, there is no systematic site dependence, indicating that other properties of the particles or errors affect the measurements and obscure the results. It is shown that the estimated daily mortality associated with short-term levels of EC is in the same range as PM10, but this is highly dependent on the EC to BS relationship that is used. RRs for all-cause mortality associated with short-term exposure to PM10 seem to be higher at sites with higher EC concentrations, but more data are needed to verify this. Olstrup Henrik H Atmospheric Science Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, 11418 Stockholm, Sweden. henrik.olstrup@aces.su.se. Johansson Christer C Atmospheric Science Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, 11418 Stockholm, Sweden. christer.johansson@aces.su.se. Environment and Health Administration, SLB, Box 8136, 104 20 Stockholm, Sweden. christer.johansson@aces.su.se. Forsberg Bertil B Division of Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden. bertil.forsberg@envmed.umu.se. eng Journal Article 2016 02 24 Switzerland Int J Environ Res Public Health 101238455 1660-4601 0 Air Pollutants 0 Vehicle Emissions 7440-44-0 Carbon IM Air Pollutants analysis Carbon analysis Cities Environmental Monitoring methods Health Status Indicators Public Health statistics & numerical data Risk Assessment Vehicle Emissions analysis PM10 black carbon black smoke combustion-related particles elemental carbon health effects relative risk urban air pollution 2015 9 8 2016 2 12 2016 2 15 2016 3 2 6 0 2016 3 2 6 0 2016 10 19 6 0 2016 3 1 epublish 26927139 PMC4808912 10.3390/ijerph13030249 ijerph13030249 Janssen N.A.H., Hoek G., Simic-Lawson M., Fischer P., van Bree L., ten Brink H., Keuken M., Atkinson R.W., Anderson H.R., Brunekreef B., et al. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5. Environ. Health Perspect. 2011;119:1691–1699. doi: 10.1289/ehp.1003369. 10.1289/ehp.1003369 PMC3261976 21810552 Janssen N.A.H., Gerlofs-Nijland M.E., Lanki T., Salonen R.O., Cassee F., Hoek G., Fischer P., Brunekreef B., Krzyzanowski M. Health Effects of Black Carbon. World Health Organization Regional Office for Europe; Copenhagen, Denmark: 2012. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. 2013;118:5380–5552. doi: 10.1002/jgrd.50171. 10.1002/jgrd.50171 Quincey P.A. Relationship between Black Smoke Index and Black Carbon concentration. Atmos. Environ. 2007;41:7964–7968. doi: 10.1016/j.atmosenv.2007.09.033. 10.1016/j.atmosenv.2007.09.033 Andersen H.R. Air pollution and mortality: A history. Atmos. Environ. 2009;43:142–152. doi: 10.1016/j.atmosenv.2008.09.026. 10.1016/j.atmosenv.2008.09.026 OECD . Methods of Measuring Air Pollution. OECD; Paris, France: 1964. Report of the Working Party on Methods of Measuring Air Pollution and Survey Techniques. Directorate for Scientific Affairs, Organization for Economic Co-operation and Development. Working Party on Methods of Measuring Air Pollution and Survey Techniques. Biersterker K., Bustueva K.A., Camner P., Friberg L., Fugas M., Horton R.J.M. Sulfur Oxides and Suspended Particulate Matter. World Health Organization; Geneva, Switzerland: 1979. International Programme on Chemical Safety. Bell M.L., Ebisu E., Peng R.D., Samet J.M., Dominici F. Hospital admission and chemical composition of fine particle air pollution. Am. J. Resp. Crit. Care Med. 2009;179:1115–1120. doi: 10.1164/rccm.200808-1240OC. 10.1164/rccm.200808-1240OC PMC2695497 19299499 Grahame T.J., Klemm R., Schlesinger R.B. Public health and components of particulate matter: The changing assessment of black carbon. J. Air Waste Manag. Assoc. 2014;64:620–660. doi: 10.1080/10962247.2014.912692. 10.1080/10962247.2014.912692 25039199 Lavanchy V.M.H., Gäggeler H.W., Nyeki S., Baltensperger U. Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmos. Environ. 1999;33:2759–2769. doi: 10.1016/S1352-2310(98)00328-8. 10.1016/S1352-2310(98)00328-8 Seinfeld H., Pandis S.N. Atmospheric Chemistry and Physics—From Air Pollution to Climate Change. 2nd ed. John Wiley & Inc.; Hoboken, NJ, USA: 2006. pp. 370–373, 628–634. Chow J.C., Watson J.G., Chen L.-W.A., Arnott W.P., Moosmüller H. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ. Sci. Tech. 2004;38:4414–4422. doi: 10.1021/es034936u. 10.1021/es034936u 15382872 Ruzar L.S., Harley N.H. Aerosols Handbook, Measurement, Dosimetry, and Health Effects. 2nd ed. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2013. p. 189. Cavalli F., Viana M., Yttri K.E., Genberg J., Putaud J.P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Tech. 2010;3:79–89. doi: 10.5194/amt-3-79-2010. 10.5194/amt-3-79-2010 Schmid H., Laskus L., Abraham H.J., Baltensperger U., Lavanchy V., Bizjak M. Results of the “carbon conference” international aerosol carbon round robin test stage 1. Atmos. Environ. 2001;35:2111–2121. doi: 10.1016/S1352-2310(00)00493-3. 10.1016/S1352-2310(00)00493-3 Hansson H.C., Nyquist G., Rosman K. Utvärdering av Sotmätningar Utförda Enligt OECD-Metoden. Resultat Från Mätningar i Stockholm Mars-Maj 1996. ITM Rapport 58. Institutet för tillämpad miljöforskning, Stockholms Universitet; Stockholm, Sweden: 1997. Zheng G.J., Cheng Y., He K.B., Duan F.K., Ma Y.L. A newly identified calculation discrepancy of the Sunset semi-continuous carbon analyzer. Atmos. Meas. Tech. 2014;7:1969–1977. doi: 10.5194/amt-7-1969-2014. 10.5194/amt-7-1969-2014 Kath H.-G. Soot measurements in Saxon air monitoring sites with the thermal-optical method and the EUSAAR-II-Programme; Proceedings of the Workshop on Measurement Methods and Perspectives; Leipzig, Germany. 8 October 2014. Erdman A., Israel G., Ulrich E. Comparative measurements of atmospheric elemental carbon using the British Black Smoke sampler and a thermal carbon analyser. Staub. 1993;53:183–191. Schaap M., Denier van der Gon H.A.C. On the variability of black smoke and carbonaceous aerosols in the Netherlands. Atmos. Environ. 2007;41:5908–5920. doi: 10.1016/j.atmosenv.2007.03.042. 10.1016/j.atmosenv.2007.03.042 Lena T.S., Ochieng V., Carter M., Holguin-Veras J., Kinney P.L. Elemental Carbon and PM2.5 levels in an urban community heavily impacted by truck traffic. Environ. Health Perspect. 2002;110:1009–1015. doi: 10.1289/ehp.021101009. 10.1289/ehp.021101009 PMC1241027 12361926 Ballach J., Hitzenberger R., Schultz E., Jaeschke W. Development of an improved optical transmission technique for black carbon (BC) analysis. Atmos. Environ. 2001;35:2089–2100. doi: 10.1016/S1352-2310(00)00499-4. 10.1016/S1352-2310(00)00499-4 European Environment Agency . Status of Black Carbon Monitoring in Ambient Air in Europe. European Environment Agency; Copenhagen, Denmark: 2013. EEA Technical Report 18/2013. Roemer W.H., van Wijnen J.H. Differences among Black Smoke, PM10, and PM1.0 Levels at Urban Measurement Sites. Environ. Health Perspect. 2001;109:151–154. doi: 10.1289/ehp.01109151. 10.1289/ehp.01109151 PMC1240635 11266325 Bailey D.L.R., Clayton P. The measurement of suspended particle and total carbon concentrations in the atmosphere using standard smoke shade methods. Atmos. Environ. 1982;16:2683–2690. doi: 10.1016/0004-6981(82)90350-X. 10.1016/0004-6981(82)90350-X Heal M.R., Quincey P. The relationship between black carbon concentration and black smoke: A more general approach. Atmos. Environ. 2012;54:538–544. doi: 10.1016/j.atmosenv.2012.02.067. 10.1016/j.atmosenv.2012.02.067 Edwards J.D., Ogren J.A., Weiss R.E., Charlson R.J. Particulate air pollutants—A comparison of British “smoke” with optical absorption coefficient and elemental carbon concentration. Atmos. Environ. 1983;17:2337–2341. doi: 10.1016/0004-6981(83)90233-0. 10.1016/0004-6981(83)90233-0 Watson J.G., Chow J.C., Chen L.-W.A. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 2005;5:65–102. Fuller K.A., Malm W.C., Kreidenweis S.M. Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. 1999;104:15941–15954. doi: 10.1029/1998JD100069. 10.1029/1998JD100069 Quincey P., Butterfield D., Green G., Fuller G.W. Black Smoke and Black Carbon: Further investigation of the relationship between these ambient air metrics. Atmos. Environ. 2011;45:3528–3534. doi: 10.1016/j.atmosenv.2011.04.009. 10.1016/j.atmosenv.2011.04.009 Butterfield D., Beccaceci S., Quincey P., Lilley A., Bradshaw C., Fuller G., Green D., Font A. 2013 Annual Report for the UK Black Carbon Network. Queen’s Printer and Controller of HMSO; London, UK: 2013. NPL Report AS 92. Janssen N.A.H., van Vliet P.H.N., Aarts F., Harssema H., Brunekreef B. Assessment of exposure to traffic-related air pollution of children attending schools near motorways. Atmos. Environ. 2001;35:3875–3884. doi: 10.1016/S1352-2310(01)00144-3. 10.1016/S1352-2310(01)00144-3 Cyrys J., Heinrich J., Hoek G., Meliefste K., Lewne M., Gehring U., Bellander T., Fischer P., van Vliet P., Brauer M., et al. Comparison between different traffic-related particle indicators: Elemental carbon (EC), PM2.5 mass, and absorbance. J. Expo. Sci. Environ. Epidemiol. 2003;13:134–143. doi: 10.1038/sj.jea.7500262. 10.1038/sj.jea.7500262 12679793 Roorda-Knape M.C., Janssen N.A.H., de Hartog J.J., van Vliet P.H.N., Harssema H., Brunekreef B. Air pollution from traffic in city districts near major motorways. Atmos. Environ. 1998;32:1921–1930. doi: 10.1016/S1352-2310(97)00496-2. 10.1016/S1352-2310(97)00496-2 Adams H.S., Nieuwenhuijsen M.J., Colvile R.N., Older M.J., Kendall M. Assessment of road users’ elemental carbon personal exposure levels, London, UK. Atmos. Environ. 2002;36:5335–5342. doi: 10.1016/S1352-2310(02)00637-4. 10.1016/S1352-2310(02)00637-4 Kinney P.L., Aggarwal M., Northridge M.E., Janssen N.A., Shepard P. Airborne concentrations of PM2.5 and diesel exhaust particles on Harlem sidewalks: A community-based pilot study. Environ. Health Perspect. 2000;108:213–218. doi: 10.1289/ehp.00108213. 10.1289/ehp.00108213 PMC1637978 10706526 Keuken M., Zandveld P., van den Elshout S., Janssen N.A.H., Hoek G. Air quality and health impact of PM10 and EC in the city of Rotterdam, the Netherlands in 1985–2008. Atmos. Environ. 2011;45:5294–5301. doi: 10.1016/j.atmosenv.2011.06.058. 10.1016/j.atmosenv.2011.06.058 Putaud J.-P., Raes F., van Dingenen R., Brüggeman E., Facchini M.-C., Decesari S., Fuzzi S., Gehrig R., Hüglin C., Laj P., et al. A European aerosol phenomenology-2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 2004;38:2579–2595. doi: 10.1016/j.atmosenv.2004.01.041. 10.1016/j.atmosenv.2004.01.041 Reche C., Querol X., Alastuey A., Viana M., Pey J., Moreno T., Rodríguez S., González Y., Fernández-Camacho R., de la Rosa J., et al. New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmos. Chem. Phys. 2011;11:6207–6227. doi: 10.5194/acp-11-6207-2011. 10.5194/acp-11-6207-2011 Eeftens M., Tsai M.-Y., Ampe C., Anwander B., Beelen R., Bellander T., Cesaroni G., Cirach M., Cyrys J., de Hoogh K., et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2—Results of the ESCAPE project. Atmos. Environ. 2012;62:303–317. doi: 10.1016/j.atmosenv.2012.08.038. 10.1016/j.atmosenv.2012.08.038 Jedynska A., Hoek G., Eeftens M., Cyrys J., Keuken M., Ampe C., Beelen R., Cesaroni G., Forastiere F., Cirach M., et al. Spatial variations of PAH, hopanes/steranes and EC/OC concentrations within and between European study areas. Atmos. Environ. 2014;87:239–248. doi: 10.1016/j.atmosenv.2014.01.026. 10.1016/j.atmosenv.2014.01.026 Brunekreef B., Forsberg B. Epidemiological evidence of effects of coarse airborne particles on health. Eur. Respir. J. 2005;26:309–318. doi: 10.1183/09031936.05.00001805. 10.1183/09031936.05.00001805 16055881 Ulrich A., Wichser A., Hess A., Heeb N., Emmenegger L., Czerwinski J., Kasper M., Mooney J., Mayer A. Particle and Metal Emissions of Diesel and Gasoline Engines—Are Particle Filters Appropriate Measures? Swiss Federal Laboratories for Material Testing and Research; Dübendorf, Switzerland: 2012. Grahame T.J. Does improved exposure information for PM2.5 constituents explain differing results among epidemiological studies? Inhal. Toxicol. 2009;21:381–393. doi: 10.1080/08958370802380495. 10.1080/08958370802380495 19234961 Schwartz J., Litonjua A., Suh H., Verrier M., Zanobetti A., Syring M., Nearing B., Verrier R., Stone P., MacCallum G., et al. Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax. 2005;60:455–461. doi: 10.1136/thx.2004.024836. 10.1136/thx.2004.024836 PMC1747419 15923244 Chang E.T., Adami H.-O., Bailey W.H., Boffetta P., Krieger R.I., Moolgavkar S.H., Mandel J.S. Validity of geographically modeled environmental exposure estimates. Crit. Rev. Toxicol. 2014;44:450–466. doi: 10.3109/10408444.2014.902029. 10.3109/10408444.2014.902029 24766059 Krecl P., Targino A.C., Johansson C. Spatiotemporal distribution of light-absorbing carbon and its relationship to other atmospheric pollutants in Stockholm. Atmos. Chem. Phys. 2011;11:11553–11567. doi: 10.5194/acp-11-11553-2011. 10.5194/acp-11-11553-2011 Schleicher N., Norra S., Fricker M., Kaminski U., Chen Y., Chai F., Wang S., Yu Y., Cen K. Spatio-temporal variations of black carbon concentrations in the Megacity Beijing. Environ. Pollut. 2013;182:392–401. doi: 10.1016/j.envpol.2013.07.042. 10.1016/j.envpol.2013.07.042 23978522 Wang Y., Hopke P.K., Utell M.J. Urban-scale Spatial-temporal Variability of Black Carbon and Winter Residential Wood Combustion Particles. Aerosol Air Qual. Res. 2011;11:473–481. doi: 10.4209/aaqr.2011.01.0005. 10.4209/aaqr.2011.01.0005 26906006 2017 04 06 2020 01 04 1614-7499 23 8 2016 Apr Environmental science and pollution research international Environ Sci Pollut Res Int 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources. 8141 8159 8141-59 10.1007/s11356-016-6308-y The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants. Weidemann Eva E 0000-0001-5415-9330 Department of Chemistry, Umeå University, Umea, Sweden. eva.weidemann@umu.se. Andersson Patrik L PL Department of Chemistry, Umeå University, Umea, Sweden. Bidleman Terry T Department of Chemistry, Umeå University, Umea, Sweden. Boman Christoffer C Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, Umea, Sweden. Carlin Danielle J DJ Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA. Collina Elena E Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy. Cormier Stephania A SA Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA. Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA. Gouveia-Figueira Sandra C SC Department of Chemistry, Umeå University, Umea, Sweden. Gullett Brian K BK U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC, USA. Johansson Christer C Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden. Environment and Health Administration, Stockholm, Sweden. Lucas Donald D Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA. Lundin Lisa L Department of Chemistry, Umeå University, Umea, Sweden. Lundstedt Staffan S Department of Chemistry, Umeå University, Umea, Sweden. Marklund Stellan S Bio4Energy, Umeå University, Umea, Sweden. Nording Malin L ML Department of Chemistry, Umeå University, Umea, Sweden. Ortuño Nuria N Chemical Engineering Department, University of Alicante, Alicante, Spain. Sallam Asmaa A AA Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA. Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA. Schmidt Florian M FM Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, Umea, Sweden. Jansson Stina S Department of Chemistry, Umeå University, Umea, Sweden. eng P42 ES013648 ES NIEHS NIH HHS United States R01 ES015050 ES NIEHS NIH HHS United States Congress 2016 02 24 Germany Environ Sci Pollut Res Int 9441769 0944-1344 0 Air Pollutants 0 Particulate Matter 0 Smoke IM Air Pollutants analysis Biomass Energy-Generating Resources Health Humans Particulate Matter analysis Smoke Sweden Congress paper Human health Particles Polychlorinated dibenzo-p-dioxins Polychlorinated dibenzofurans Products of incomplete combustion Soot 2015 12 21 2016 2 15 2016 2 25 6 0 2016 2 26 6 0 2017 4 7 6 0 ppublish 26906006 10.1007/s11356-016-6308-y 10.1007/s11356-016-6308-y Anal Chem. 2015 Jul 7;87(13):6493-9 26024433 Chemosphere. 2014 Jan;94:42-7 24120013 Environ Sci Technol. 2014 Apr 1;48(7):3995-4001 24617498 Waste Manag Res. 2015 Jul;33(7):630-43 26185164 Chemosphere. 2011 Jan;82(1):72-7 21040943 J Hazard Mater. 2013 Sep 15;260:819-24 23856312 Int J Toxicol. 2014 Jan-Feb;33(1):3-13 24434722 Waste Manag. 2014 Nov;34(11):2407-13 25002370 Environ Eng Sci. 2008 Oct;25(8):1107-1114 22476005 Chemosphere. 2013 Apr;91(2):118-23 23232045 Sci Total Environ. 2014 Nov 15;499:27-35 25173859 Part Fibre Toxicol. 2014 Oct 30;11:57 25358535 Environ Sci Technol. 2013 Aug 6;47(15):8443-52 23895511 Chemosphere. 2016 Feb;145:193-9 26688256 Ital J Pediatr. 2013 Jan 11;39(1):1 23311474 26900652 2016 12 27 2018 11 13 1745-5065 12 2 2016 Women's health (London, England) Womens Health (Lond) The 2015 Pregnancy Summit, London, UK. 167 170 167-70 10.2217/whe.15.107 Pregnancy Summit, Cineworld, The O2, London, UK, 29 September to 1 October 2015 The 2015 Pregnancy Summit was held over 3 days from 29 September to 1 October at Cineworld, The O2, London, UK. The event brings together a multidisciplinary faculty of international researchers and clinicians to discuss both scientific and clinical aspects of pregnancy-related issues in an informal setting. The goal of the meeting was to provide delegates with an update of recent advances in management of pregnancy-related conditions, to present research data and to discuss the current attitudes and practices in relevant topics. An extensive range of topics were discussed, from preeclampsia and treatment of hypertension, to the psychological impact of termination of pregnancy and feticide. This report will summarize a selection of the lectures presented. Johansson Cherynne C Department of Obstetrics & Gynaecology, Liverpool Hospital, Elizabeth & Campbell Streets, Liverpool, New South Wales 2170, Australia. eng Journal Article 2016 02 22 United States Womens Health (Lond) 101271249 1745-5057 IM Congresses as Topic Female Humans London Pregnancy Pregnancy Complications diagnosis therapy 2016 2 23 6 0 2016 2 24 6 0 2016 12 28 6 0 2017 3 1 ppublish 26900652 PMC5375050 10.2217/whe.15.107 Morrison-Beedy D, Jones SH, Xia Y, et al. Reducing sexual risk behavior in adolescent girls: results from a randomized controlled trial. J. Adolesc. Health 52, 314–321 (2013). PMC3580004 23299011 Lowry P. Endokinin: the placental tachykinin behind morning sickness? The Endocrinologist 115, 26 (2015). Hansson SR, Gram M, Akerstrom B. Fetal haemoglobin in preeclampsia: a new causative factor, a tool for prediction/diagnosis and a potential target for therapy. Curr. Opin. Obstet. Gynecol. 25(6), 448–455 (2013). 24185004 Walter-Rosenlof L, Casslen V, Axelsson J, et al. A1M/α1-microglobulin protects from heme-induced placental and renal damage in a pregnant sheep model of preeclampsia. PLoS ONE 9(1), e86353 (2014). PMC3904882 24489717 Sverisson K, Axelsson J, Rippe A, et al. Extracellular fetal haemoglobin induces increases in glomerular permeability: inhibition with α1-microglobulin and tempol. Am. J. Physiol. Renal Physiol. 306, F442–F448 (2014). 24338823 Naav A, Erlandsson L, Axelsson J, et al. A1M ameliorates preeclampsia-like symptoms in placenta and kidney induced by cell-free fetal hemoglobin in rabbit. PLoS ONE 10 (5), e0125499 (2015). PMC4425457 25955715 Chaffin D. A decade of hemodynamic evaluation of Appalachian pregnancies. Presented at: The 2015 Pregnancy Summit London, UK, 29 September–1 October 2015. Siegler E. LLETZ treatment of CIN 2–3 in the first trimester of pregnancy – is it time to change the indications? Presented at: The 2015 Pregnancy Summit. London, UK, 29 September–1 October 2015. Azarpazhooh A. Separating fact from fiction: interactions between oral health and adverse pregnancy outcome. Presented at: The 2015 Pregnancy Summit London, UK, 29 September–1 October 2015. Lafarge C, Mitchell K, Fox P. Women's coping with pregnancy termination for fetal abnormality: an interpretative phenomenological analysis of women's experiences. Qual. Health Res. 23(7), 924–936 (2013). 23558712 Leichtentritt RD. Silenced voices: Israeli mothers' experience of feticide. Soc. Sci. Med. 72(5), 747–754 (2011). 21306809 Leichtentritt RD, Mahat-Shamir M. Mothers' continuing bond with the baby: the case of feticide. Qual. Health Res. doi:10.1177/1049732315616626 (2015) (Epub ahead of print). 26631684 Andersson M, Raibhandari R, et al. Mother-to-child transmission of hepatitis B virus in sub-Saharan Africa: time to act. Lancet Global Health 3(7), e358–e359 (2015). 26087980 Life Science Events. www.lifescienceevents.com 26845235 2016 10 28 2019 12 10 1860-7187 11 5 2016 Mar 04 ChemMedChem ChemMedChem Fragment Screening of Soluble Epoxide Hydrolase for Lead Generation-Structure-Based Hit Evaluation and Chemistry Exploration. 497 508 497-508 10.1002/cmdc.201500575 Soluble epoxide hydrolase (sEH) is involved in the regulation of many biological processes by metabolizing the key bioactive lipid mediator, epoxyeicosatrienoic acids. For the development of sEH inhibitors with improved physicochemical properties, we performed both a fragment screening and a high-throughput screening aiming at an integrated hit evaluation and lead generation. Followed by a joint dose-response analysis to confirm the hits, the identified actives were then effectively triaged by a structure-based hit-classification approach to three prioritized series. Two distinct scaffolds were identified as tractable starting points for potential lead chemistry work. The oxoindoline series bind at the right-hand side of the active-site pocket with hydrogen bonds to the protein. The 2-phenylbenzimidazole-4-sulfonamide series bind at the central channel with significant induced fit, which has not been previously reported. On the basis of the encouraging initial results, we envision that a new lead series with improved properties could be generated if a vector is found that could merge the cyclohexyl functionality of the oxoindoline series with the trifluoromethyl moiety of the 2-phenylbenzimidazole-4-sulfonamide series. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Xue Yafeng Y Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden. Olsson Thomas T Department Medicinal Chemistry, CVMD iMED, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden. Johansson Carina A CA Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden. Öster Linda L Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden. Beisel Hans-Georg HG Department Medicinal Chemistry, CVMD iMED, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden. Rohman Mattias M Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden. Karis David D Department Medicinal Chemistry, CVMD iMED, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden. Bäckström Stefan S Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden. yafeng.xue@astrazeneca.com. eng Journal Article Validation Study 2016 02 04 Germany ChemMedChem 101259013 1860-7179 EC 3.3.2.- Epoxide Hydrolases IM Catalytic Domain Epoxide Hydrolases antagonists & inhibitors chemistry metabolism High-Throughput Screening Assays Models, Molecular Molecular Structure Solubility drug discovery high-throughput screening inhibitors ligand complex structures soluble epoxide hydrolase 2015 12 11 2016 2 5 6 0 2016 2 5 6 0 2016 11 1 6 0 ppublish 26845235 10.1002/cmdc.201500575 26839151 2016 12 27 2016 12 30 1460-2350 31 4 2016 Apr Human reproduction (Oxford, England) Hum Reprod Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication. 687 699 687-99 10.1093/humrep/dew004 What proteins are carried by extracellular vesicles (EVs) released from normal first trimester placentae? One thousand five hundred and eighty-five, 1656 and 1476 proteins were characterized in macro-, micro- and nano-vesicles, respectively, from first trimester placentae, with all EV fractions being enriched for proteins involved in vesicle transport and inflammation. Placental EVs are being increasingly recognized as important mediators of both healthy and pathological pregnancies. However, current research has focused on detecting changes in specific proteins in particular fractions of vesicles during disease. This is the first study to investigate the full proteome of different-sized fractions of EVs from the same first trimester placenta and highlights the differences/similarities between the vesicle fractions. A well-established ex vivo placental explant culture model was used to generate macro-, micro- and nano-vesicles from 56 first trimester placentae. Vesicle fractions were collected by differential ultracentrifugation, quantified and characterized. Placental macro-, micro- and nano-vesicles were characterized by microscopy, dynamic light scattering and nanoparticle tracking analysis. The proteome of each EV fraction was interrogated using liquid chromatography-coupled tandem mass spectrometry. Results were validated by semi-quantitative western blotting. A total of 1585, 1656 and 1476 proteins were identified in macro-, micro- and nano-vesicles, respectively. One thousand one hundred and twenty-five proteins were shared between all three fractions while up to 223 proteins were unique to each fraction. Gene Ontology pathway analysis showed an enrichment of proteins involved in vesicle transport and inflammation in all three fractions of EVs. The expression levels of proteins involved in internalization of vesicles (annexin V, calreticulin, CD31, CD47), the complement pathway [C3, decay-accelerating factor (DAF), membrane cofactor protein (MCP), protectin] and minor histocompatibility antigens [ATP-dependent RNA helicase (DDX3), ribosomal protein S4 (RPS4)] were different between different-sized EVs. This study is largely hypothesis-generating in nature. It is important to validate these findings using EVs isolated from maternal plasma and the function of the different EV fractions would need further investigation. Our results support the concept that various EV factions can interact with different maternal cells and have unique effects to mediate feto-maternal communication during early pregnancy. This study also provides a list of candidate proteins, which may inform the identification of robust markers that can be used to isolate placental vesicles from the maternal blood in the future. M.T. is a recipient of the University of Auckland Health Research Doctoral Scholarship and the Freemasons Postgraduate Scholarship. This project was supported by a School of Medicine Performance-based research fund (PBRF) grant awarded to L.W.C. No authors have any conflicts of interest to disclose. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com. Tong Mancy M Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand mancy.tong@auckland.ac.nz. Kleffmann Torsten T Centre for Protein Research, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand. Pradhan Shantanu S Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand. Johansson Caroline L CL Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-581 83, Sweden. DeSousa Joana J Maternal Fetal Medicine, Auckland City Hospital, Auckland 1023, New Zealand. Stone Peter R PR Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand Maternal Fetal Medicine, Auckland City Hospital, Auckland 1023, New Zealand. James Joanna L JL Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand. Chen Qi Q Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand. Chamley Larry W LW Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand. eng Comparative Study Journal Article Research Support, Non-U.S. Gov't 2016 02 01 England Hum Reprod 8701199 0268-1161 0 Pregnancy Proteins 0 Proteome IM Abortion, Legal Blotting, Western Chromatography, High Pressure Liquid Dynamic Light Scattering Extracellular Vesicles chemistry physiology ultrastructure Female Humans Maternal-Fetal Exchange Microscopy, Electron, Transmission New Zealand Particle Size Placenta chemistry physiology ultrastructure Pregnancy Pregnancy Proteins chemistry physiology Pregnancy Trimester, First Proteome chemistry physiology Proteomics methods Spectrometry, Mass, Electrospray Ionization Tandem Mass Spectrometry Tissue Culture Techniques exosome extracellular vesicle microparticle syncytial knots syncytial nuclear aggregates trophoblast deportation trophoblastic debris 2015 7 3 2016 1 2 2016 2 4 6 0 2016 2 4 6 0 2016 12 28 6 0 ppublish 26839151 10.1093/humrep/dew004 dew004 26831833 2017 01 13 2017 01 13 1651-2057 96 6 2016 Aug 23 Acta dermato-venereologica Acta Derm Venereol Serotonergic Markers in Atopic Dermatitis. 732 736 732-6 10.2340/00015555-2354 Stress and anxiety may worsen atopic dermatitis (AD) through the serotonin system. Serotonergic expression was measured in 28 patients with AD in relation to extent of the disease (SCORing of Atopic Dermatitis; SCORAD), pruritus intensity (visual analogue scale; VAS), anxiety traits (Swedish Universities Scales of Personality; SSP) and depression (Montgomery-Åsberg Depression Rating Scale-Self assessment; MADRS-S). Biopsies were taken from lesional and non-lesional AD skin, and investigated for expression of serotonin, its receptors 5-HT1A and 5-HT2, and serotonin transporter protein (SERT), using immunohistochemistry. 5-HT1AR-immunoreactivity (ir) was higher in lesional skin in apical epidermis and in mast cell-like cells in dermis, and 5-HT2AR-ir in apical epidermis and on blood vessels. In contrast, a basement membrane 5-HT2AR-ir signal was higher in non-lesional skin. The distribution of SERT-ir in the basal epidermal layer was higher in lesional skin. Positive and negative correlations were found between serotonergic markers and SCORAD, inflammation, pruritus intensity, anxiety traits, and depression score, indicating that serotonergic mechanisms are involved in AD. Rasul Aram A Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, SE-171 76 Stockholm, Sweden. aram.rasul@ki.se. El-Nour Husameldin H Lonne-Rahm Sol-Britt SB Fransson Oscar O Johansson Charlotta C Johansson Björn B Zubeidi Marwe M Seeberg Emma E Djurfeldt Diana Radu DR Azmitia Efrain C EC Nordlind Klas K eng Journal Article Sweden Acta Derm Venereol 0370310 0001-5555 0 Receptor, Serotonin, 5-HT2A 0 Serotonin Plasma Membrane Transport Proteins 112692-38-3 Receptor, Serotonin, 5-HT1A 333DO1RDJY Serotonin IM Adult Anxiety psychology Biopsy Depression psychology Dermatitis, Atopic immunology physiopathology psychology Female Humans Immunohistochemistry Male Middle Aged Pruritus immunology physiopathology psychology Receptor, Serotonin, 5-HT1A metabolism Receptor, Serotonin, 5-HT2A metabolism Self-Assessment Serotonin metabolism Serotonin Plasma Membrane Transport Proteins metabolism Severity of Illness Index 2016 2 3 6 0 2016 2 3 6 0 2017 1 14 6 0 ppublish 26831833 10.2340/00015555-2354 26778247 2016 05 13 2018 11 13 2041-1723 7 2016 Jan 18 Nature communications Nat Commun Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. 10365 10365 10365 10.1038/ncomms10365 The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼ 140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening. Jakobsson Martin M Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. UNIS - The University Centre in Svalbard, Longyearbyen N-9171, Svalbard. Nilsson Johan J Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Department of Meteorology, Stockholm University, Stockholm 106 91, Sweden. Anderson Leif L Department of Marine Sciences, University of Gothenburg, Gothenburg 405 30, Sweden. Backman Jan J Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Björk Göran G Department of Marine Sciences, University of Gothenburg, Gothenburg 405 30, Sweden. Cronin Thomas M TM US Geological Survey Reston, 12201 Sunrise Valley Drive, Reston, Virginia 20192, USA. Kirchner Nina N Department of Physical Geography, Stockholm University, Stockholm 106 91, Sweden. Koshurnikov Andrey A National Research Tomsk Polytechnic University, Tomsk 634050, Russia. Department of Geocryology, Moscow State University, Moscow 119991, Russia. Mayer Larry L Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Road, Durham, New Hampshire 03824, USA. Noormets Riko R UNIS - The University Centre in Svalbard, Longyearbyen N-9171, Svalbard. O'Regan Matthew M Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Stranne Christian C Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Road, Durham, New Hampshire 03824, USA. Ananiev Roman R National Research Tomsk Polytechnic University, Tomsk 634050, Russia. Department of Geocryology, Moscow State University, Moscow 119991, Russia. Barrientos Macho Natalia N Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Cherniykh Denis D National Research Tomsk Polytechnic University, Tomsk 634050, Russia. Russian Academy of Sciences, Pacific Oceanological Institute, 43 Baltiiskaya Street, Vladivostok 690041, Russia. Coxall Helen H Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Eriksson Björn B Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Flodén Tom T Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Gemery Laura L US Geological Survey Reston, 12201 Sunrise Valley Drive, Reston, Virginia 20192, USA. Gustafsson Örjan Ö Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden. Jerram Kevin K Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Road, Durham, New Hampshire 03824, USA. Johansson Carina C Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Khortov Alexey A National Research Tomsk Polytechnic University, Tomsk 634050, Russia. Mohammad Rezwan R Department of Geological Sciences, Stockholm University, Stockholm 106 91, Sweden. Bolin Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden. Semiletov Igor I National Research Tomsk Polytechnic University, Tomsk 634050, Russia. Russian Academy of Sciences, Pacific Oceanological Institute, 43 Baltiiskaya Street, Vladivostok 690041, Russia. eng Journal Article Research Support, Non-U.S. Gov't 2016 01 18 England Nat Commun 101528555 2041-1723 Nature. 2016 Feb 11;530(7589):163-4. doi: 10.1038/nature16878 26840488 2015 6 10 2015 12 4 2016 1 19 6 0 2016 1 19 6 0 2016 1 19 6 1 2016 1 18 epublish 26778247 PMC4735638 10.1038/ncomms10365 ncomms10365 Thomson W. Polar ice-caps and their influence on changing sea levels. Trans. Geol. Soc. Glasgow 8, 322–340 (1888). Donn W. L. & Ewing M. A theory of Ice Ages III. Science 152, 1706–1712 (1966). 17757794 Mercer J. H. A former ice sheet in the Arctic Ocean? Palaeogeogr. Palaeoclimatol. Palaeoecol. 8, 19–27 (1970). Broecker W. S. Floating glacial ice caps in Arctic Ocean. Science 188, 1116–1118 (1975). 17798435 Hughes T. J., Denton G. H. & Grosswald M. G. Was there a late-Würm Arctic ice sheet? Nature 266, 596–602 (1977). Schytt V., Hoppe G., Blake W. Jr & Grosswald M. G. The extent of the Würm glaciation in the European Arctic. Meddelanden från Naturgeografiska Institutionen vid Stockholms universitet 79, 207–216 (1966). Grosswald M. G. Late Weichselian ice sheets of northern Eurasia. Quat. Res. 13, 1–32 (1980). Denton G. H. & Hughes T. J. in The Last Great Ice Sheets eds Denton G. H., Hughes T. J. Ch. 8, 437–467 Wiley Interscience (1981). Mix A. in The Geology of North America Vol. K-3, eds Ruddiman W. F., Wright H. E. Jr The Geological Society of America (1987). Williams D. F., Moore W. S. & Fillon R. H. Role of glacial Artic Ocean ice sheets in Pleistocene oxygen isotope and sea level records. Earth Planet. Sci. Lett. 56, 157–166 (1981). Johnson R. G. & Andrews J. T. Rapid ice-sheet growth and initiation of the last glaciation. Quat. Res. 12, 119–134 (1979). Johnson R. G. & Andrews J. T. Glacial terminations in the oxygen isotope record of deep sea cores: hypothesis of massive Antarctic ice-shelf destruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 53, 107–138 (1986). Vogt P. R., Crane K. & Sundvor E. Deep Pleistocene iceberg plowmarks on the Yermak Plateau: sidescan and 3.5 kHz evidence for thick calving ice fronts and a possible marine ice sheet in the Arctic Ocean. Geology 22, 403–406 (1994). Polyak L., Edwards M. H., Coakley B. J. & Jakobsson M. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–459 (2001). 11260709 Jakobsson M. First high-resolution chirp sonar profiles from the central Arctic Ocean reveal erosion of Lomonsov Ridge sediments. Mar. Geol. 158, 111–123 (1999). Jakobsson M. et al.. An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data. Quat. Sci. Rev. 29, 3505–3517 (2010). Jokat W. The sedimentary structure of the Lomonosov Ridge between 88° N and 80° N. Geophys. J. Int. 163, 698–726 (2005). Kristoffersen Y. et al.. Seabed erosion on the Lomonosov Ridge, central Arctic Ocean: a tale of deep draft icebergs in the Eurasia Basin and the influence of Atlantic water inflow on iceberg motion? Paleoceanography 19, PA3006 (2004). Clark C. D. Mega-scale glacial lineations and cross-cutting ice-flow landforms. Earth Surf. Processes Landforms 18, 1–29 (1993). Jokat W., Weigelt E., Kristoffersen Y., Rasmussen T. & Schöne T. New insigths into the evolution of the Lomonsov Ridge and the Eurasaian Basin. Geophys. J. Int. 122, 378–392 (1995). Niessen F. et al.. Repeated Pleistocene glaciation of the East Siberian continental margin. Nat. Geosci. 6, 842–846 (2013). Dove D., Polyak L. & Coakley B. Widespread, multi-source glacial erosion on the Chukchi margin, Arctic Ocean. Quat. Sci. Rev. 92, 112–122 (2014). Jakobsson M. et al.. Arctic Ocean glacial history. Quat. Sci. Rev. 92, 40–67 (2014). Ottesen D. & Dowdeswell J. A. An inter-ice-stream glaciated margin: Submarine landforms and a geomorphic model based on marine-geophysical data from Svalbard. Geol. Soc. Am. Bull. 121, 1647–1665 (2009). Hanslik D. et al.. Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections. Quat. Sci. Rev. 29, 3430–3441 (2010). Poirier R. K., Cronin T. M., Briggs W. M. Jr & Lockwood R. Central Arctic paleoceanography for the last 50 kyr based on ostracode faunal assemblages. Mar. Micropaleontol. 88–89, 65–76 (2012). O'Regan M. et al.. Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge. Paleoceanography 23, PA1S19 (2008). Jakobsson M. et al.. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28, 23–26 (2000). Backman J., Fornaciari E. & Rio D. Biochronology and paleoceanography of late Pleistocene and Holocene calcareous nannofossils across the Arctic Basin. Mar. Micropaleontol. 72, 86–98 (2009). Matthiessen J., Knies J., Nowaczyk N. R. & Stein R. Late Quaternary dinoflagellate cyst stratigraphy at the Eurasian continental margin, Arctic Ocean: indications for Atlantic water inflow in the past 150,000 years. Global Planet. Change 31, 65–68 (2001). Polyak L., Curry W. B., Darby D. A., Bischof J. & Cronin T. M. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 73–93 (2004). Cronin T. M. et al.. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean. Mar. Micropaleontol. 111, 118–133 (2014). Dowdeswell J. A. et al.. High-resolution geophysical observations from the Yermak Plateau and northern Svalbard margin: implications for ice-sheet grounding and deep-keeled icebergs. Quat. Sci. Rev. 29, 3518–3531 (2010). Arndt J. E., Niessen F., Jokat W. & Dorschel B. Deep water paleo-iceberg scouring on top of Hovgaard Ridge–Arctic Ocean. Geophys. Res. Lett. 41, 2014GL060267 (2014). Jakobsson M. et al.. Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean. Global Planet. Change 31, 1–22 (2001). Polyak L., Darby D., Bischof J. & Jakobsson M. Stratigraphic constraints on late Pleistocene glacial erosion and deglaciation of the Chukchi margin, Arctic Ocean. Quat. Res. 67, 234–245 (2007). Cronin T. M. et al.. Deep Arctic Ocean warming during the last glacial cycle. Nat. Geosci. 5, 631–634 (2012). Nøst O. A. et al.. Eddy overturning of the Antarctic slope front controls glacial melting in the Eastern Weddell Sea. J. Geophys. Res. C: Oceans 116, C11014 (2011). Kirchner N., Furrer R., Jakobsson M., Zwally H. J. & Robbins J. W. Statistical modeling of a former Arctic Ocean ice shelf complex using Antarctic analogies. J. Geophys. Res. Earth Surf. 118, 1–13 (2013). Depoorter M. A. et al.. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013). 24037377 Colleoni F., Krinner G., Jakobsson M., Peyaud V. & Ritz C. Influence of regional parameters on the surface mass balance of the Eurasian ice sheet during the peak Saalian (140 kya). Global Planet. Change 68, 132–148 (2009). Colleoni F., Werkele C. & Masina S. Long-Term Safety of a Planned Geological Repository for Spent Nucleaer Fuel in Forsmark - Estimate of Maximum Ice Sheet Thicknesses 1–96Swedish Nuclear Fuel and Waste Management Co (2014). Pierrehumbert R. T., Abbot D. S., Voigt A. & Koll D. Climate of the Neoproterozoic. Ann. Rev. Earth Planet. Sci. 39, 417–460 (2011). Siddall M. et al.. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003). 12815427 Noerdlinger K. W. & Brower K. R. The melting of floating ice raises the ocean level. Geophys. J. Int. 170, 145–150 (2007). Shackleton N. J. & Opdyke N. D. Oxygen isotope and Palaeomagnetic stratigraphy of equatorial pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat. Res. 3, 39–55 (1973). Colleoni F. On the Late Saalian Glaciation (160 - 140 ka) – A Climate Modeling Study PhD thesis Stockholm University/Université Joseph Fourier (2009). Gill A. E. The hydraulics of rotating-channel flow. J. Fluid Mech. 80, 641–671 (1977). Svendsen J. I. et al.. Late quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 23, 1229–1271 (2004). Dyke A. S. et al.. The Laurentide and Innuitian ice sheets during the last glacial maximum. Quat. Sci. Rev. 21, 9–31 (2002). Engels J. L., Edwards M. H., Polyak L. & Johnson P. D. Seafloor evidence for ice shelf flow across the Alaska–Beaufort margin of the Arctic Ocean. Earth Surf. Processes Landforms 32, 1–17 (2008). Jakobsson M. et al.. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys. Res. Lett. 39, L12609 (2012). 26762613 2017 08 02 2018 12 02 1365-2486 22 7 2016 Jul Global change biology Glob Chang Biol Echinometra sea urchins acclimatized to elevated pCO2 at volcanic vents outperform those under present-day pCO2 conditions. 2451 2461 2451-61 10.1111/gcb.13223 Rising atmospheric CO2 concentrations will significantly reduce ocean pH during the 21st century (ocean acidification, OA). This may hamper calcification in marine organisms such as corals and echinoderms, as shown in many laboratory-based experiments. Sea urchins are considered highly vulnerable to OA. We studied an Echinometra species on natural volcanic CO2 vents in Papua New Guinea, where they are CO2 -acclimatized and also subjected to secondary ecological changes from elevated CO2 . Near the vent site, the urchins experienced large daily variations in pH (>1 unit) and pCO2 (>2000 ppm) and average pH values (pHT 7.73) much below those expected under the most pessimistic future emission scenarios. Growth was measured over a 17-month period using tetracycline tagging of the calcareous feeding lanterns. Average-sized urchins grew more than twice as fast at the vent compared with those at an adjacent control site and assumed larger sizes at the vent compared to the control site and two other sites at another reef near-by. A small reduction in gonad weight was detected at the vents, but no differences in mortality, respiration, or degree of test calcification were detected between urchins from vent and control populations. Thus, urchins did not only persist but actually 'thrived' under extreme CO2 conditions. We suggest an ecological basis for this response: Increased algal productivity under increased pCO2 provided more food at the vent, resulting in higher growth rates. The wider implication of our observation is that laboratory studies on non-acclimatized specimens, which typically do not consider ecological changes, can lead to erroneous conclusions on responses to global change. © 2016 John Wiley & Sons Ltd. Uthicke Sven S Australian Institute of Marine Science, PMB No 3, Townsville, Qld, 4810, Australia. Ebert Thomas T Department of Zoology, Oregon State University, Corvallis, OR, 97324, USA. Liddy Michelle M Department of Marine Science, University of Otago, 9016, Dunedin, New Zealand. Johansson Charlotte C Australian Institute of Marine Science, PMB No 3, Townsville, Qld, 4810, Australia. Fabricius Katharina E KE Australian Institute of Marine Science, PMB No 3, Townsville, Qld, 4810, Australia. Lamare Miles M Department of Marine Science, University of Otago, 9016, Dunedin, New Zealand. eng GENBANK KT198748 KT198751 Journal Article 2016 05 02 England Glob Chang Biol 9888746 1354-1013 142M471B3J Carbon Dioxide IM Acclimatization Animals Carbon Dioxide chemistry Papua New Guinea Sea Urchins physiology Seawater chemistry Ocean acidification calcifying invertebrates carbon dioxide vents indirect effects 2015 8 11 2015 12 16 2016 1 4 2016 1 15 6 0 2016 1 15 6 0 2017 8 3 6 0 ppublish 26762613 10.1111/gcb.13223 26741168 2016 07 26 2024 02 10 1520-4804 59 4 2016 Feb 25 Journal of medicinal chemistry J Med Chem 8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors. 1388 1409 1388-409 10.1021/acs.jmedchem.5b01635 We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay. Bavetsias Vassilios V Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Lanigan Rachel M RM Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Ruda Gian Filippo GF Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford , NDMRB Roosevelt Drive, Oxford OX3 7FZ, U.K. Atrash Butrus B Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. McLaughlin Mark G MG Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Tumber Anthony A Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford , NDMRB Roosevelt Drive, Oxford OX3 7FZ, U.K. Mok N Yi NY Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Le Bihan Yann-Vaï YV Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Dempster Sally S Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Boxall Katherine J KJ Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Jeganathan Fiona F Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Hatch Stephanie B SB Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford , NDMRB Roosevelt Drive, Oxford OX3 7FZ, U.K. Savitsky Pavel P Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Velupillai Srikannathasan S Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Krojer Tobias T Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. England Katherine S KS Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford , NDMRB Roosevelt Drive, Oxford OX3 7FZ, U.K. Sejberg Jimmy J Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Thai Ching C Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Donovan Adam A Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Pal Akos A Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Scozzafava Giuseppe G Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford , NDMRB Roosevelt Drive, Oxford OX3 7FZ, U.K. Bennett James M JM Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford , NDMRB Roosevelt Drive, Oxford OX3 7FZ, U.K. Kawamura Akane A Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K. Johansson Catrine C Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Botnar Research Centre, NIHR Oxford Biomedical Research Unit , Oxford OX3 7LD, U.K. Szykowska Aleksandra A Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Gileadi Carina C Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Burgess-Brown Nicola A NA Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. von Delft Frank F Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Diamond Light Source (DLS), Harwell Science and Innovation Campus , Didcot OX11 0DE, U.K. Department of Biochemistry, University of Johannesburg , Auckland Park 2006, South Africa. Oppermann Udo U Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Botnar Research Centre, NIHR Oxford Biomedical Research Unit , Oxford OX3 7LD, U.K. Walters Zoe Z Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research , London SM2 5NG, U.K. Shipley Janet J Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research , London SM2 5NG, U.K. Raynaud Florence I FI Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Westaway Susan M SM Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K. Prinjha Rab K RK Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K. Fedorov Oleg O Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford , NDMRB Roosevelt Drive, Oxford OX3 7FZ, U.K. Burke Rosemary R Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Schofield Christopher J CJ Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K. Westwood Isaac M IM Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Bountra Chas C Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Müller Susanne S Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford , NDMRB Roosevelt Drive, Oxford OX3 7FZ, U.K. van Montfort Rob L M RL Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. Brennan Paul E PE Structural Genomics Consortium (SGC), University of Oxford , ORCRB Roosevelt Drive, Oxford OX3 7DQ, U.K. Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford , NDMRB Roosevelt Drive, Oxford OX3 7FZ, U.K. Blagg Julian J Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, London SM2 5NG, U.K. eng C309/A11566 CRUK_ Cancer Research UK United Kingdom 092809/Z/10/Z WT_ Wellcome Trust United Kingdom 106169 WT_ Wellcome Trust United Kingdom 11566 CRUK_ Cancer Research UK United Kingdom 18245 CRUK_ Cancer Research UK United Kingdom WT_ Wellcome Trust United Kingdom Journal Article Research Support, Non-U.S. Gov't 2016 01 07 United States J Med Chem 9716531 0022-2623 0 Enzyme Inhibitors 0 Nuclear Proteins 0 Pyrimidinones 0 Repressor Proteins EC 1.14.11.- Jumonji Domain-Containing Histone Demethylases EC 1.14.11.- KDM4D protein, human EC 1.14.11.- KDM5B protein, human EC 1.5.- KDM4A protein, human IM Caco-2 Cells Cell Membrane Permeability Enzyme Inhibitors chemistry pharmacokinetics pharmacology Humans Jumonji Domain-Containing Histone Demethylases antagonists & inhibitors chemistry metabolism Nuclear Proteins antagonists & inhibitors chemistry metabolism Pyrimidinones chemistry pharmacokinetics pharmacology Repressor Proteins antagonists & inhibitors chemistry metabolism The authors
declare no competing financial interest. 2016 1 8 6 0 2016 1 8 6 0 2016 7 28 6 0 2016 2 29 ppublish 26741168 PMC4770324 10.1021/acs.jmedchem.5b01635 Pedersen M. T.; Helin K. Histone Demethylases in Development and Disease. Trends Cell Biol. 2010, 20, 662–671. 10.1016/j.tcb.2010.08.011. 10.1016/j.tcb.2010.08.011 20863703 Shi Y.; Whetstine J. R. Dynamic Regulation of Histone Lysine Methylation by Demethylases. Mol. Cell 2007, 25, 1–14. 10.1016/j.molcel.2006.12.010. 10.1016/j.molcel.2006.12.010 17218267 Shiau C.; Trnka M. J.; Bozicevic A.; Torres I. O.; Al-Sady B.; Burlingame A. L.; Narlikar G. J.; Fujimori D. G. Reconstitution of Nucleosome Demethylation and Catalytic Proporties of a Jumonji Histone Demethylase. Chem. Biol. 2013, 20, 494–499. 10.1016/j.chembiol.2013.03.008. 10.1016/j.chembiol.2013.03.008 PMC3704229 23601638 Kooistra S. M.; Helin K. Molecular Mechanisms and Potential Functions of Histone Demethylases. Nat. Rev. Mol. Cell Biol. 2012, 13, 297–311. 10.1038/nrm3327. 10.1038/nrm3327 22473470 Young L. C.; Hendzel M. J. The Oncogenic Potential of Jumonji D2 (JMJD2/KDM4) Histone Demethylase Overexpression. Biochem. Cell Biol. 2013, 91, 369–377. 10.1139/bcb-2012-0054. 10.1139/bcb-2012-0054 24219278 Hillringhaus L.; Yue W. W.; Rose N. R.; Ng S. S.; Gileadi C.; Loenarz C.; Bello S. H.; Bray J. E.; Schofield C. J.; Oppermann U. Structural and Evolutionary Basis for the Dual Substrate Selectivity of Human KDM4 Histone Demethylase Family. J. Biol. Chem. 2011, 286, 41616–41625. 10.1074/jbc.M111.283689. 10.1074/jbc.M111.283689 PMC3308871 21914792 Berry W. L.; Janknecht R. KDM4/JMJD2 Histone Demethylases: Epigenetic Regulators in Cancer Cells. Cancer Res. 2013, 73, 2936–2942. 10.1158/0008-5472.CAN-12-4300. 10.1158/0008-5472.CAN-12-4300 PMC3655154 23644528 Williams S. T.; Walport L. J.; Hopkinson R. J.; Madden S. K.; Chowdhury R.; Schofield C. J.; Kawamura A. Studies on the Catalytic Domains of Multiple JmjC Oxygenases Using Peptide Substrates. Epigenetics 2014, 9, 1596–1603. 10.4161/15592294.2014.983381. 10.4161/15592294.2014.983381 PMC4623018 25625844 Trojer P.; Zhang J.; Yonezawa M.; Schmidt A.; Zheng H.; Jenuwein T.; Reinberg D. Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJ/KDM4 Proteins. J. Biol. Chem. 2009, 284, 8395–8405. 10.1074/jbc.M807818200. 10.1074/jbc.M807818200 PMC2659197 19144645 Liu G.; Bollig-Fischer A.; Kreike B.; van de Vijver M. J.; Abrams J.; Ethier S. P.; Yang Z.-Q. Genomic Amplification and Oncogenic Properties of the GASC1 Histone Demethylases Gene in Breast Cancer. Oncogene 2009, 28, 4491–4500. 10.1038/onc.2009.297. 10.1038/onc.2009.297 PMC2795798 19784073 Kawazu M.; Saso K.; Tong K. I.; McQuire T.; Goto K.; Son D.-O.; Wakeham A.; Miyagishi M.; Mak T. W.; Okada H. Histone Demethylase JMJD2B Functions as a Co-Factor of Estrogen Receptor in Breast Cancer Proliferation and Mammary Gland Development. PLoS One 2011, 6, e17830.10.1371/journal.pone.0017830. 10.1371/journal.pone.0017830 PMC3060874 21445275 Li W.; Zhao L.; Zang W.; Liu Z.; Chen L.; Liu T.; Xu D.; Jia J. Histone Demethylase JMJD2B is Required for Tumour Cell Proliferation and Survival and is Overexpressed in Gastric Cancer. Biochem. Biophys. Res. Commun. 2011, 416, 372–378. 10.1016/j.bbrc.2011.11.045. 10.1016/j.bbrc.2011.11.045 22133676 Walters Z. S.; Villarejo-Balcells B.; Olmos D.; Buist T. W. S.; Missiaglia E.; Allen R.; Al-Lazikani B.; Garrett M. D.; Blagg J.; Shipley J. JARID2 is a Direct Target of the PAX3-FOXO1 Fusion Protein and Inhibits Myogenic Differentiation of Rhabdomyosarcoma Cells. Oncogene 2014, 33, 1148–1157. 10.1038/onc.2013.46. 10.1038/onc.2013.46 PMC3982124 23435416 Yang J.; Al Tahan A. M.; Hu D.; Wang Y.; Cheng P.-H.; Morton C. L.; Qu C.; Nathwani A. C.; Shohet J. M.; Fotsis T.; Koster J.; Versteeg R.; Okada H.; Harris A. L.; Davidoff A. M. The Role of Histone Demethylase KDM4B in Myc Signaling in Neuroblastoma. J. Natl. Cancer Inst. 2015, 107, djv080.10.1093/jnci/djv080. 10.1093/jnci/djv080 PMC4555638 25925418 Black J. C.; Manning A. L.; Van Rechem C.; Kim J.; Ladd B.; Cho J.; Pineda C. M.; Murphy N.; Daniels D. L.; Montagna C.; Lewis P. W.; Glass K.; Allis D. C.; Dyson N. J.; Getz G.; Whetstine J. R. KDM4A Lysine Demethylase Induces Site-Specific Copy Gain and Rereplication of Regions Amplified in Tumors. Cell 2013, 154, 541–555. 10.1016/j.cell.2013.06.051. 10.1016/j.cell.2013.06.051 PMC3832053 23871696 Van Rechem C.; Black J. C.; Greninger P.; Zhao Y.; Donado C.; Burrowes P. D.; Ladd B.; Christiani D. C.; Benes C. H.; Whetstine J. R. A Coding Single-Nucleotide Polymorphism in Lysine Demethylase KDM4A Associates with Increased Sensitivity to mTOR Inhibitors. Cancer Discovery 2015, 5, 245–254. 10.1158/2159-8290.CD-14-1159. 10.1158/2159-8290.CD-14-1159 PMC4355226 25564517 Van Rechem C.; Black J. C.; Boukhali M.; Aryee M. J.; Graslund S.; Haas W.; Benes C. H.; Whetstine J. R. Lysine Demethylase KDM4A Associates with Translation Machinery and Regulates Protein Synthesis. Cancer Discovery 2015, 5, 255–263. 10.1158/2159-8290.CD-14-1326. 10.1158/2159-8290.CD-14-1326 PMC4355328 25564516 Blair L. P.; Cao J.; Zou M. R.; Sayegh J.; Yan Q. Epigenetic Regulation by Lysine Demethylase 5 (KDM5) Enzymes in Cancer. Cancers 2011, 3, 1383–1404. 10.3390/cancers3011383. 10.3390/cancers3011383 PMC3085456 21544224 You J. S.; Jones P. A. Cancer Genetics and Epigenetics: Two Sides of the Same Coin?. Cancer Cell 2012, 22, 9–20. 10.1016/j.ccr.2012.06.008. 10.1016/j.ccr.2012.06.008 PMC3396881 22789535 Klein B. J.; Piao L.; Xi Y.; Rincon-Arano H.; Rothbart S. B.; Peng D.; Wen H.; Larson C.; Zhang X.; Zheng X.; Cortazar M. A.; Pena P. V.; Mangan A.; Bentley D. L.; Strahl B. D.; Groudine M.; Li W.; Shi X.; Kutateladze T. G. The Histone-H3K4-specific Demethylase KDM5B Binds to Its Substrate and Product Through Distinct PHD Fingers. Cell Rep. 2014, 6, 325–335. 10.1016/j.celrep.2013.12.021. 10.1016/j.celrep.2013.12.021 PMC3918441 24412361 Yamamoto S.; Wu Z.; Russnes H. G.; Takagi S.; Peluffo G.; Vaske C.; Zhao X.; Moen Vollan H. K.; Maruyama R.; Ekram M. B.; Sun H.; Kim J. H.; Carver K.; Zucca M.; Feng J.; Almendro V.; Bessarabova M.; Rueda O. M.; Nikolsky Y.; Caldas C.; Liu X. S.; Polyak K. JARID1B Is a Luminal Lineage-Driving Oncogene in Breast Cancer. Cancer Cell 2014, 25, 762–777. 10.1016/j.ccr.2014.04.024. 10.1016/j.ccr.2014.04.024 PMC4079039 24937458 Stein J.; Majores M.; Rohde M.; Lim S.; Schneider S.; Krappe E.; Ellinger J.; Dietel M.; Stephan C.; Jung K.; Perner S.; Kristiansen G.; Kirfel J. KDM5C Is Overexpressed in Prostate Cancer and Is a Prognostic Marker for Prostate-Specific Antigen-Relapse Following Radical Prostatectomy. Am. J. Pathol. 2014, 184, 2430–2437. 10.1016/j.ajpath.2014.05.022. 10.1016/j.ajpath.2014.05.022 25016185 Helin K.; Dhanak D. Chromatin Proteins and Modifications as Drug Targets. Nature 2013, 502, 480–488. 10.1038/nature12751. 10.1038/nature12751 24153301 Kruidenier L.; Chung C.-W.; Cheng Z.; Liddle J.; Che K.; Joberty G.; Bantscheff M.; Bountra C.; Bridges A.; Diallo H.; Eberhard D.; Hutchinson S.; Jones E.; Katso R.; Leveridge M.; Mander P. K.; Mosley J.; Ramirez-Molina C.; Rowland P.; Schofield C. J.; Sheppard R. J.; Smith J. E.; Swales C.; Tanner R.; Thomas P.; Tumber A.; Drewes G.; Oppermann U.; Patel D. J.; Lee K.; Wilson D. M. A Selective Jumonji H3K27 Demethylase Inhibitor Modulates the Proinflammatory Macrophage Response. Nature 2012, 488, 404–408. 10.1038/nature11262. 10.1038/nature11262 PMC4691848 22842901 Labbe R. M.; Holowatyj A.; Yang Z.-Q. Histone Lysine Demethylase (KDM) Subfamily 4: Structures, Functions and Therapeutic Potential. Am. J. Transl Res. 2014, 6, 1–15. PMC3853420 24349617 Heightman T. D. Chemical Biology of Lysine Demethylases. Curr. Chem. Genomics 2011, 5, 62–71. 10.2174/1875397301005010062. 10.2174/1875397301005010062 PMC3178875 21966346 Suzuki T.; Miyata N. Lysine Demethylases Inhibitors. J. Med. Chem. 2011, 54, 8236–8250. 10.1021/jm201048w. 10.1021/jm201048w 21955276 Lohse B.; Kristensen J. L.; Kristensen L. H.; Agger K.; Helin K.; Gajhede M.; Clausen R. P. Inhibitors of Histone Demethylases. Bioorg. Med. Chem. 2011, 19, 3625–3636. 10.1016/j.bmc.2011.01.046. 10.1016/j.bmc.2011.01.046 21596573 Hoffmann I.; Roatsch M.; Schmitt M. L.; Carlino L.; Pippel M.; Sippl W.; Jung M. The Role of Histone Demethylases in Cancer Therapy. Mol. Oncol. 2012, 6, 683–703. 10.1016/j.molonc.2012.07.004. 10.1016/j.molonc.2012.07.004 PMC5528348 22902149 Zheng W.; Huang Y. The Chemistry and Biology of the α-Ketoglutarate-Dependent Histone Nε-Methyl-Lysine Demethylases. Med. MedChemComm 2014, 5, 297–313. 10.1039/c3md00325f. 10.1039/c3md00325f Chin Y.-W.; Han S.-Y. KDM4 Histone Demethylase Inhibitors for Anti-cancer Agents: A Patent Review. Expert Opin. Ther. Pat. 2015, 25, 135–144. 10.1517/13543776.2014.991310. 10.1517/13543776.2014.991310 25468267 Rose N. R.; Ng S. S.; Mecinovic J.; Lienard B. M. R.; Bello S. H.; Sun Z.; McDonough M. A.; Oppermann U.; Schofield C. J. Inhibitor Scaffolds for 2-Oxoglutarate-Dependent Histone Lysine Demethylases. J. Med. Chem. 2008, 51, 7053–7056. 10.1021/jm800936s. 10.1021/jm800936s 18942826 Chang K.-H.; King O. N. F.; Tumber A.; Woon E. C. Y.; Heightman T. D.; McDonough M. A.; Schofield C. J.; Rose N. R. Inhibition of Histone Demethylases by 4-Carboxy-2,2′ – Bipyridyl Compounds. ChemMedChem 2011, 6, 759–764. 10.1002/cmdc.201100026. 10.1002/cmdc.201100026 PMC4696159 21412984 England K. S.; Tumber A.; Krojer T.; Scozzafava G.; Ng S. S.; Daniel M.; Szykowska A.; Che K.; von Delft F.; Burgess-Brown N. A.; Kawamura A.; Schofield C. J.; Brennan P. E. Optimisation of a Triazolopyridine Based Histone Demethylase Inhibitor Yields a Potent and Selective KDM2A (FBXL11) Inhibitor. MedChemComm 2014, 5, 1879–1886. 10.1039/C4MD00291A. 10.1039/C4MD00291A PMC4678576 26682034 Mjambili F.; Njoroge M.; Naran K.; De Kock C.; Smith P. J.; Mizrahi V.; Warner D.; Chibale K. Synthesis and Biological Evaluation of 2-Aminothiazole Derivatives as Antimycobacterial and Antiplasmodial Agents. Bioorg. Med. Chem. Lett. 2014, 24, 560–564. 10.1016/j.bmcl.2013.12.022. 10.1016/j.bmcl.2013.12.022 24373723 Labelle M.; Boesen T.; Mehrotra M.; Khan Q.; Ullah F.. Inhibitors of Histone Demethylases. WO2014/053491, 2014. Ng S. S.; Kavanagh K. L.; McDonough M. A.; Butler D.; Pilka E. S.; Lienard B. M. R.; Bray J. E.; Savitsky P.; Gileadi O.; von Delft F.; Rose N. R.; Offer J.; Scheinost J. C.; Borowski T.; Sundstrom M.; Schofield C. J.; Oppermann U. Crystal Structures of Histone Demethylase JMJD2A Reveal Basis for Substrate Specificity. Nature 2007, 448, 87–91. 10.1038/nature05971. 10.1038/nature05971 17589501 Chu C.-H.; Wang L.-Y.; Hsu K.-S.; Chen C.-C.; Cheng H.-H.; Wang S.-M.; Wu C.-M.; Chen T.-J.; Li L.-T.; Liu R.; Hung C.-L.; Yang J.-M.; Kung H.-J.; Wang W.-C. KDM4B as a Target for Prostate Cancer: Structural Analysis and Selective Inhibition by a Novel Inhibitor. J. Med. Chem. 2014, 57, 5975–5985. 10.1021/jm500249n. 10.1021/jm500249n PMC4216216 24971742 Kanouni T.; Stafford J. A.; Veal J. M.; Wallace M. B.. Histone Demethylase Inhibitors. WO2014/151106, 2014. pKa Measurements were performed by Pharmorphix Solid State Services, Member of the Sigma-Aldrich Group, Cambridge, UK (Currently known as: Johnson Matthey Plc, Fine Chemicals Division (Pharmorphix), Cambridge, UK). Pryde D. C.; Dalvie D.; Hu Q.; Jones P.; Obach R. S.; Tran T.-D. Aldehyde Oxidase: An Enzyme of Emerging Importance in Drug Discovery. J. Med. Chem. 2010, 53, 8441–8460. 10.1021/jm100888d. 10.1021/jm100888d 20853847 Hopkinson R. J.; Tumber A.; Yapp C.; Chowdhury R.; Aik W.; Che K. H.; Li X. S.; Kristensen J. B. L.; King O. N. F.; Chan M. C.; Yeoh K. H.; Choi H.; Walport L. J.; Thinnes C. C.; Bush J. T.; Lejeune C.; Rydzik A. M.; Rose N. R.; Bagg E. A.; McDonough M. A.; Krojer T. J.; Yue W. W.; Ng S. S.; Olsen L.; Brennan P. E.; Oppermann U.; Müller S.; Klose R. J.; Ratcliffe P. J.; Schofield C. J.; Kawamura A. 5-Carboxy-8-Hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor Which Causes Iron Translocation. Chem. Sci. 2013, 4, 3110–3117. 10.1039/c3sc51122g. 10.1039/c3sc51122g PMC4678600 26682036 Kawamura A.; Tumber A.; Rose N. R.; King O. N. F.; Daniel M.; Oppermann U.; Heightman T. D.; Schofield C. Development of Homogeneous Luminesence Assays for Histone Demethylase Catalysis and Binding. Anal. Biochem. 2010, 404, 86–93. 10.1016/j.ab.2010.04.030. 10.1016/j.ab.2010.04.030 PMC4673899 20435012 Maestro, version 9.3; Schrödinger, LLC: New York, 2012. Glide, version 5.8; Schrödinger, LLC: New York, 2012. LigPrep, version 2.5; Schrödinger, LLC: New York, 2011. Savitsky P.; Bray J.; Cooper C. D.; Marsden B. D.; Mahajan P.; Burgess-Brown N. A.; Gileadi O. High-throughput Production of Human Proteins for Crystallization: The SGC Experience. J. Struct. Biol. 2010, 172, 3–13. 10.1016/j.jsb.2010.06.008. 10.1016/j.jsb.2010.06.008 PMC2938586 20541610 Kabsch W. XDS. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 125–132. 10.1107/S0907444909047337. 10.1107/S0907444909047337 PMC2815665 20124692 Evans P. Scaling and Assessment of Data Quality. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2006, 62, 72–82. 10.1107/S0907444905036693. 10.1107/S0907444905036693 16369096 McCoy A. J.; Grosse-Kunstleve R. W.; Adams P. D.; Winn M. D.; Storoni L. C.; Read R. J. Phaser Crystallographic Software. J. Appl. Crystallogr. 2007, 40, 658–674. 10.1107/S0021889807021206. 10.1107/S0021889807021206 PMC2483472 19461840 Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. Overview of the CCP4 Suite and Current Developments. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 235–242. 10.1107/S0907444910045749. 10.1107/S0907444910045749 PMC3069738 21460441 Emsley P.; Cowtan K. Coot: Model-building Tools for Molecular Graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 2126–2132. 10.1107/S0907444904019158. 10.1107/S0907444904019158 15572765 Bricogne G.; Blanc E.; Brandl M.; Flensburg C.; Keller P.; Paciorek W.; Roversi P.; Sharff A.; Smart O. S.; Vonrhein C.; Womack T. O.. BUSTER, version 2.10.2; Global Phasing Ltd.: Cambridge, UK, 2015. Adams P. D.; Afonine P. V.; Bunkóczi G.; Chen V. B.; Davis I. W.; Echols N.; Headd J. J.; Hung L.-W.; Kapral G. J.; Grosse-Kunstleve R. W.; McCoy A. J.; Moriarty N. W.; Oeffner R.; Read R. J.; Richardson D. C.; Richardson J. S.; Terwilliger T. C.; Zwart P. H. PHENIX: a Comprehensive Python-based System for Macromolecular Structure Solution. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 213–221. 10.1107/S0907444909052925. 10.1107/S0907444909052925 PMC2815670 20124702 Murshudov G. N.; Vagin A. A.; Dodson E. J. Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1997, 53, 240–255. 10.1107/S0907444996012255. 10.1107/S0907444996012255 15299926 Smart O. S.; Womack T. O.; Sharff A.; Flensburg C.; Keller P.; Paciorek W.; Vonrhein C.; Bricogne G.. Grade, version 1.2.9; Global Phasing Ltd.: Cambridge, UK, 2014. Bruno I. J.; Cole J. C.; Lommerse R. S.; Rowland R.; Taylor R.; Verdonk M. L. Isostar: A Library of Information About Non-bonded Interactions. J. Comput.-Aided Mol. Des. 1997, 11, 525–537. 10.1023/A:1007934413448. 10.1023/A:1007934413448 9491345 Chen V. B.; Arendall W. B. III; Headd J. J.; Keedy D. A.; Immormino R. M.; Kapral G. J.; Murray L. W.; Richardson J. S.; Richardson D. C. MolProbity: All-atom Structure Validation for Macromolecular Crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 12–21. 10.1107/S0907444909042073. 10.1107/S0907444909042073 PMC2803126 20057044 Davis I. W.; Leaver-Fay A.; Chen V. B.; Block J. N.; Kapral G. J.; Wang X.; Murray L. W.; Arendall W. B. 3rd; Snoeyink J.; Richardson J. S.; Richardson D. C. MolProbity: All-atom Contacts and Structure Validation for Proteins and Nucleic Acids. Nucleic Acids Res. 2007, 35, W375–W383. 10.1093/nar/gkm216. 10.1093/nar/gkm216 PMC1933162 17452350 Obach R. S. Potent Inhibition of Human Liver Aldehyde Oxidase by Raloxifene. Drug Metab. Dispos. 2004, 32, 89–97. 10.1124/dmd.32.1.89. 10.1124/dmd.32.1.89 14709625 26688048 2016 12 13 2019 12 10 2045-2322 5 2015 Dec 21 Scientific reports Sci Rep T cell responses are elicited against Respiratory Syncytial Virus in the absence of signalling through TLRs, RLRs and IL-1R/IL-18R. 18533 18533 18533 10.1038/srep18533 Pattern recognition receptors (PRRs) and cytokine receptors are key players in the initiation of immune responses to infection. PRRs detecting viral RNA, such as toll like receptor (TLR)-3, -7/8, and RIG-I like receptors (RLRs; RIG-I and MDA-5), as well as cytokine receptors such as interleukin 1 receptor (IL-1R), have been implicated in responses to RNA viruses that infect the airways. The latter includes respiratory syncytial virus (RSV), a human pathogen that can cause severe lower respiratory tract infections, especially in infants. To evaluate the collective contribution of PRRs and IL-1R signalling to RSV immunity, we generated Myd88/Trif/Mavs(-/-) mice that are deficient in signalling by all TLRs, RLRs and IL-1R, as well as other cytokine receptors such as IL-18 receptor. Early production of pro-inflammatory mediators and lung infiltration by immune cells were completely abrogated in infected Myd88/Trif/Mavs(-/-) mice. However, RSV-specific CD8(+) T cells were elicited and recruited into the lungs and airways. Consistent with these findings, Myd88/Trif/Mavs(-/-) mice survived RSV infection but displayed higher viral load and weight loss. These data highlight an unappreciated level of redundancy in pathways that couple innate virus sensing to adaptive immunity, providing the host with remarkable resilience to infection. Goritzka Michelle M Centre for Respiratory Infections, Respiratory Infections Section, St Mary's campus, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W2 1PG, UK. Pereira Catherine C Centre for Respiratory Infections, Respiratory Infections Section, St Mary's campus, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W2 1PG, UK. Makris Spyridon S Centre for Respiratory Infections, Respiratory Infections Section, St Mary's campus, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W2 1PG, UK. Durant Lydia R LR Centre for Respiratory Infections, Respiratory Infections Section, St Mary's campus, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W2 1PG, UK. Johansson Cecilia C Centre for Respiratory Infections, Respiratory Infections Section, St Mary's campus, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W2 1PG, UK. eng G0800311 Medical Research Council United Kingdom Journal Article Research Support, Non-U.S. Gov't 2015 12 21 England Sci Rep 101563288 2045-2322 0 Adaptor Proteins, Signal Transducing 0 Adaptor Proteins, Vesicular Transport 0 IL1R2 protein, human 0 IPS-1 protein, mouse 0 Myd88 protein, mouse 0 Myeloid Differentiation Factor 88 0 Receptors, Cytokine 0 Receptors, Interleukin-1 Type II 0 Receptors, Interleukin-18 0 Receptors, Pattern Recognition 0 TICAM-1 protein, mouse IM Adaptor Proteins, Signal Transducing genetics Adaptor Proteins, Vesicular Transport genetics Animals Humans Infections genetics immunology virology Mice Mice, Transgenic Myeloid Differentiation Factor 88 genetics Receptors, Cytokine genetics immunology Receptors, Interleukin-1 Type II genetics Receptors, Interleukin-18 genetics immunology Receptors, Pattern Recognition genetics immunology Respiratory Syncytial Virus Infections genetics immunology pathology Respiratory Syncytial Viruses immunology pathogenicity Respiratory Tract Infections genetics immunology virology Signal Transduction T-Lymphocytes immunology pathology Viral Load 2015 4 2 2015 11 18 2015 12 22 6 0 2015 12 22 6 0 2016 12 15 6 0 2015 12 21 epublish 26688048 PMC4685246 10.1038/srep18533 srep18533 Nair H. et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375, 1545–1555 (2010). PMC2864404 20399493 Chiu C. & Openshaw P. J. Antiviral B cell and T cell immunity in thelungs. Nat Immunol 16, 18–26 (2015). PMC7097128 25521681 Borchers A. T., Chang C., Gershwin M. E. & Gershwin L. J. Respiratory Syncytial Virus–A Comprehensive Review. Clinic Rev Allerg Immunol, doi: 10.1007–s12016–013–8368–9 (2013). PMC7090643 23575961 Graham B. S., Bunton L. A., Wright P. F. & Karzon D. T. Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J Clin Invest 88, 1026–1033 (1991). PMC295511 1909350 Neyt K. & Lambrecht B. N. The role of lung dendritic cell subsets in immunity to respiratory viruses. Immunol Rev 255, 57–67 (2013). 23947347 Braciale T. J., Sun J. & Kim T. S. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol 12, 295–305 (2012). PMC3364025 22402670 Durbin R. K., Kotenko S. V. & Durbin J. E. Interferon induction and function at the mucosal surface. Immunol Rev 255, 25–39 (2013). PMC5972370 23947345 Yoo J.-K., Kim T. S., Hufford M. M. & Braciale T. J. Viral infection of the lung: Host response and sequelae. J Allergy Clin Immunol 132, 1263–1276 (2013). PMC3844062 23915713 Goritzka M. et al. Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. J. Exp. Med. 212, 699–714 (2015). PMC4419339 25897172 Kumar H., Kawai T. & Akira S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16–34 (2011). 21235323 Sabbah A. et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol 10, 1073–1080 (2009). PMC2752345 19701189 Goubau D., Deddouche S. & Reis e Sousa C. Cytosolic Sensing of Viruses. Immunity 38, 855–869 (2013). PMC7111113 23706667 Pang I. K., Ichinohe T. & Iwasaki A. IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8(+) T cell responses to influenza A virus. Nat Immunol 14, 246–253 (2013). PMC3577947 23314004 Deguine J. & Barton G. M. MyD88: a central player in innate immune signaling. F1000Prime Rep 6, 97, doi: 10.12703/P6-97 (2014). 10.12703/P6-97 PMC4229726 25580251 Marr N., Turvey S. E. & Grandvaux N. Pathogen recognition receptor crosstalk in respiratory syncytial virus sensing: a host and cell type perspective. Trends Microbiol. 21, 568–574 (2013). PMC4848032 24119913 Murawski M. R. et al. Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J Virol 83, 1492–1500 (2009). PMC2620898 19019963 Kurt-Jones E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1, 398–401 (2000). 11062499 Haynes L. M. et al. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 75, 10730–10737 (2001). PMC114654 11602714 Rudd B. D. et al. Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J Immunol 176, 1937–1942 (2006). 16424225 Lukacs N. W. et al. Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation. J Immunol 185, 2231–2239 (2010). PMC3006454 20624950 Demoor T. et al. IPS-1 Signaling Has a Nonredundant Role in Mediating Antiviral Responses and the Clearance of Respiratory Syncytial Virus. J Immunol 189, 5942–5953 (2012). PMC3888965 23136205 Bhoj V. G. et al. MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proc Natl Acad Sci USA 105, 14046–14051 (2008). PMC2532974 18780793 Goritzka M. et al. Interferon-α/β receptor signaling amplifies early pro-inflammatory cytokine production in the lung during Respiratory Syncytial Virus infection. J Virol 88, 6128–6136 (2014). PMC4093897 24648449 Zaiss D. M. W., Gause W. C., Osborne L. C. & Artis D. Emerging Functions of Amphiregulin in Orchestrating Immunity, Inflammation, and Tissue Repair. Immunity 42, 216–226 (2015). PMC4792035 25692699 Pribul P. K. et al. Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J Virol 82, 4441–4448 (2008). PMC2293049 18287232 Loebbermann J. et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal immunology 5, 161–172 (2012). PMC3282434 22236998 Sokol C. L. & Luster A. D. The Chemokine System in Innate Immunity. Cold Spring Harb Perspect Biol, doi: 10.1101/cshperspect.a016303 (2015). 10.1101/cshperspect.a016303 PMC4448619 25635046 Zelenay S. & Sousa C. R. E. Adaptive immunity after cell death. Trends Immunol 34, 329–335 (2013). 23608152 Sancho D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009). PMC2671489 19219027 Zelenay S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J Clin Invest 122, 1615–1627 (2012). PMC3336984 22505458 Iborra S. et al. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J Clin Invest 122, 1628–1643 (2012). PMC3336985 22505455 Durant L. R. et al. DNGR-1 is dispensable for CD8(+) T-cell priming during respiratory syncytial virus infection. Eur J Immunol 44, 2340–2348 (2014). 24777856 Marichal T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17, 996–1002 (2011). 21765404 Cai X., Chiu Y.-H. & Chen Z. J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014). 24766893 Tal G. et al. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis 189, 2057–2063 (2004). 15143473 Tulic M. K. et al. TLR4 polymorphisms mediate impaired responses to respiratory syncytial virus and lipopolysaccharide. J Immunol 179, 132–140 (2007). 17579031 Janssen R. et al. Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. J Infect Dis 196, 826–834 (2007). 17703412 Awomoyi A. A. et al. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J Immunol 179, 3171–3177 (2007). 17709532 Siezen C. L. E. et al. Genetic susceptibility to respiratory syncytial virus bronchiolitis in preterm children is associated with airway remodeling genes and innate immune genes. Pediatr Infect Dis J 28, 333–335 (2009). 19258923 Durbin J. E. et al. The role of IFN in respiratory syncytial virus pathogenesis. J Immunol 168, 2944–2952 (2002). 11884466 Monticelli L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12, 1045–1054 (2011). PMC3320042 21946417 Adachi O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998). 9697844 Yamamoto M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science (New York, NY) 301, 640–643 (2003). 12855817 Kumar H. et al. Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med. 203, 1795–1803 (2006). PMC2118350 16785313 Lee D. C. P. et al. CD25+ natural regulatory T cells are critical in limiting innate and adaptive immunity and resolving disease following respiratory syncytial virus infection. J Virol 84, 8790–8798 (2010). PMC2919030 20573822 Asselin-Paturel C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2, 1144–1150 (2001). 11713464 26413805 2016 05 27 2018 12 02 1095-8630 165 2016 Jan 01 Journal of environmental management J Environ Manage Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars. 117 123 117-123 10.1016/j.jenvman.2015.09.021 S0301-4797(15)30273-5 Ash disposal waters from coal-fired power stations present a challenging water treatment scenario as they contain high concentrations of the oxyanions Se, As and Mo which are difficult to remove through conventional techniques. In an innovative process, macroalgae can be treated with Fe and processed through slow pyrolysis into Fe-biochar which has a high affinity for oxyanions. However, the effect of production conditions on the efficacy of Fe-biochar is poorly understood. We produced Fe-biochar from two algal sources; "Gracilaria waste" (organic remnants after agar is extracted from cultivated Gracilaria) and the freshwater macroalgae Oedogonium. Pyrolysis experiments tested the effects of the concentration of Fe(3+) in pre-treatment, and pyrolysis temperatures, on the efficacy of the Fe-biochar. The efficacy of Fe-biochar increased with increasing concentrations of Fe(3+) in the pre-treatment solutions, and decreased with increasing pyrolysis temperatures. The optimized Fe-biochar for each biomass was produced by treatment with a 12.5% w/v Fe(3+) solution, followed by slow pyrolysis at 300 °C. The Fe-biochar produced in this way had higher a biosorption capacity for As and Mo (62.5-80.7 and 67.4-78.5 mg g(-1) respectively) than Se (14.9-38.8 mg g(-1)) in single-element mock effluents, and the Fe-biochar produced from Oedogonium had a higher capacity for all elements than the Fe-biochar produced from Gracilaria waste. Regardless, the optimal Fe-biochars from both biomass sources were able to effectively treat Se, As and Mo simultaneously in an ash disposal effluent from a power station. The production of Fe-biochar from macroalgae is a promising technique for treatment of complex effluents containing oxyanions. Copyright © 2015 Elsevier Ltd. All rights reserved. Johansson Charlotte L CL MACRO - the Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia. Electronic address: charlotte.johansson@my.jcu.edu.au. Paul Nicholas A NA MACRO - the Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia. de Nys Rocky R MACRO - the Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia. Roberts David A DA MACRO - the Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia. eng Journal Article Research Support, Non-U.S. Gov't 2015 09 27 England J Environ Manage 0401664 0301-4797 0 Coal 0 Coal Ash 0 Water Pollutants, Chemical 0 biochar 16291-96-6 Charcoal 81AH48963U Molybdenum E1UOL152H7 Iron H6241UJ22B Selenium N712M78A8G Arsenic IM Arsenic chemistry Biomass Charcoal chemistry Chlorophyta chemistry Coal Coal Ash chemistry Fresh Water Gracilaria chemistry Iron chemistry Molybdenum chemistry Seaweed chemistry Selenium chemistry Water Pollutants, Chemical chemistry Water Purification methods Biochar Bioremediation Biosorption Gracilaria Macroalgae Oedogonium Pyrolysis 2014 11 29 2015 8 28 2015 9 17 2015 9 29 6 0 2015 9 29 6 0 2016 5 28 6 0 ppublish 26413805 10.1016/j.jenvman.2015.09.021 S0301-4797(15)30273-5 26363250 2017 05 04 2018 12 02 1878-1632 16 5 2016 May The spine journal : official journal of the North American Spine Society Spine J The long-term outcome of lumbar fusion in the Swedish lumbar spine study. 579 587 579-87 10.1016/j.spinee.2015.08.065 S1529-9430(15)01371-6 Current literature suggests that in the long-term, fusion of the lumbar spine in chronic low back pain (CLBP) does not result in an outcome clearly better than structured conservative treatment modes. This study aimed to assess the long-term outcome of lumbar fusion in CLBP, and also to assess methodological problems in long-term randomized controlled trials (RCTs). A prospective randomized study was carried out. A total of 294 patients (144 women and 150 men) with CLBP of at least 2 years' duration were randomized to lumbar fusion or non-specific physiotherapy. The mean follow-up time was 12.8 years (range 9-22). The follow up rate was 85%; exclusion of deceased patients resulted in a follow-up rate of 92%. Global Assessment (GA) of back pain, Oswestry Disability Index (ODI), visual analogue scale (VAS) for back and leg pain, Zung depression scale were determined. Work status, pain medication, and pain frequency were also documented. Standardized outcome questionnaires were obtained before treatment and at long-term follow-up. To optimize control for group changers, four models of data analysis were used according to (1) intention to treat (ITT), (2) "as treated" (AT), (3) per protocol (PP), and (4) if the conservative group automatically classify group changers as unchanged or worse in GA (GCAC). The initial study was sponsored by Acromed (US$50,000-US$100,000). Except for the ITT model, the GA, the primary outcome measure, was significantly better for fusion. The proportion of patients much better or better in the fusion group was 66%, 65%, and 65% in the AT, PP, and GCAC models, respectively. In the conservative group, the same proportions were 31%, 37%, and 22%, respectively. However, the ODI, VAS back pain, work status, pain medication, and pain frequency were similar between the two groups. One can conclude that from the patient's perspective, reflected by the GA, lumbar fusion surgery is a valid treatment option in CLBP. On the other hand, secondary outcome measures such as ODI and work status, best analyzed by the PP model, indicated that substantial disability remained at long-term after fusion as well as after conservative treatment. The lack of objective outcome measures in CLBP and the cross-over problem transforms an RCT to an observational study, that is, Level 2 evidence. The discrepancy between the primary and secondary outcome measures prevents a strong conclusion on whether to recommend fusion in non-specific low back pain. Copyright © 2015 Elsevier Inc. All rights reserved. Hedlund Rune R Department of Orthopaedics, Salhgrenska University Hospital, Bruna stråket 11, Gothenburg, SE 413 45, Sweden. Electronic address: rune.hedlund@vgregion.se. Johansson Christer C Department of Orthopaedics, Salhgrenska University Hospital, Bruna stråket 11, Gothenburg, SE 413 45, Sweden. Hägg Olle O Göteborg Spine Center, Gruvgatan 8, Västra Frölunda, SE 421 30, Sweden. Fritzell Peter P Department of Orthopedics, Länssjukhuset, Ryhov, SE 551 85 Ryhov, Sweden. Tullberg Tycho T Stockholm Spine Center AB, Löwenströmska Sjukhuset, Upplands Väsby, SE 194 89, Sweden. Swedish Lumbar Spine Study Group eng Journal Article Randomized Controlled Trial 2015 09 09 United States Spine J 101130732 1529-9430 IM Spine J. 2016 May;16(5):588-90. doi: 10.1016/j.spinee.2015.12.001 27261844 Spine J. 2017 May;17(5):754. doi: 10.1016/j.spinee.2016.12.006 28431682 Adult Female Humans Low Back Pain surgery Lumbar Vertebrae surgery Male Middle Aged Physical Therapy Modalities adverse effects Postoperative Complications Prospective Studies Randomized Controlled Trials as Topic Spinal Fusion adverse effects Surveys and Questionnaires Sweden Treatment Outcome Chronic low back pain Conservative treatment Long-term outcome Lumbar fusion Physical therapy Randomized trial 2015 2 19 2015 7 30 2015 8 27 2015 9 13 6 0 2015 9 13 6 0 2017 5 5 6 0 ppublish 26363250 10.1016/j.spinee.2015.08.065 S1529-9430(15)01371-6 26343639 2016 05 24 2018 11 13 1422-0067 16 9 2015 Aug 27 International journal of molecular sciences Int J Mol Sci Classification of Magnetic Nanoparticle Systems--Synthesis, Standardization and Analysis Methods in the NanoMag Project. 20308 20325 20308-25 10.3390/ijms160920308 This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles. Bogren Sara S Acreo Swedish ICT AB, Arvid Hedvalls Backe 4, Box 53071, SE-400 14 Göteborg, Sweden. sara.bogren@acreo.se. Fornara Andrea A SP Technical Research Institute of Sweden, Box 5607, SE-114 86 Stockholm, Sweden. andrea.fornara@sp.se. Ludwig Frank F Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig D-38106, Germany. f.ludwig@tu-bs.de. Del Puerto Morales Maria M Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid, Spain. puerto@icmm.csic.es. Steinhoff Uwe U Physikalisch-Technische Bundesanstalt, D-10587 Berlin, Germany. Uwe.Steinhoff@ptb.de. Hansen Mikkel Fougt MF Department of Micro and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, Kgs. Lyngby DK-2800, Denmark. mikkel.hansen@nanotech.dtu.dk. Kazakova Olga O National Physical Laboratory, TW11 0LW Teddington, UK. olga.kazakova@npl.co.uk. Johansson Christer C Acreo Swedish ICT AB, Arvid Hedvalls Backe 4, Box 53071, SE-400 14 Göteborg, Sweden. christer.johansson@acreo.se. eng Journal Article Research Support, Non-U.S. Gov't 2015 08 27 Switzerland Int J Mol Sci 101092791 1422-0067 0 Magnetite Nanoparticles IM Algorithms Magnetite Nanoparticles chemistry classification Models, Theoretical magnetic analysis magnetic material magnetic nanoparticles magnetic synthesis nanostructures standardization 2015 7 3 2015 8 14 2015 8 19 2015 9 8 6 0 2015 9 8 6 0 2016 5 25 6 0 2015 9 1 epublish 26343639 PMC4613205 10.3390/ijms160920308 ijms160920308 Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003;36:R167–R181. doi: 10.1088/0022-3727/36/13/201. 10.1088/0022-3727/36/13/201 Krishnan K.M. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 2010;46:2523–2558. doi: 10.1109/TMAG.2010.2046907. 10.1109/TMAG.2010.2046907 PMC2949969 20930943 NanoMag-Project. [(accessed on 1 November 2013)]. Available online: www.nanomag-project.eu. Gutiérrez L., Costo R., Grüttner C., Westphal F., Gehrke N., Heinke D., Fornara A., Pankhurst Q.A., Johansson C., Veintemillas-Verdaguer S., et al. Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans. 2015;44:2943–2951. doi: 10.1039/C4DT03013C. 10.1039/C4DT03013C 25564784 Ahrentorp F., Astalan A., Blomgren J., Jonasson C., Wetterskog E., Svedlindh P., Lak A., Ludwig F., van IJzendoorn L.J., Westphal F., et al. Effective particle magnetic moment of multi-core particles. J. Magn. Magn. Mater. 2015;380 doi: 10.1016/j.jmmm.2014.09.070. 10.1016/j.jmmm.2014.09.070 Ludwig F., Kazakova O., Barquín L.F., Fornara A., Trahms L., Steinhoff U., Svedlindh P., Wetterskog E., Pankhurst Q.A., Southern P., et al. Magnetic, structural, and particle size analysis of single- and multi-core magnetic nanoparticles. IEEE Trans. Mag. 2014;50 doi: 10.1109/TMAG.2014.2321456. 10.1109/TMAG.2014.2321456 Ahrentorp F., Astalan A.P., Jonasson C., Blomgren J., Qi B., Mefford O.T., Yan M., Courtois J., Berret J.F., Fresnais J., et al. Sensitive high frequency AC suceptometry in magnetic nanoparticle applications. AIP Conf. Proc. 2010;1311:213–223. Öisjöen F., Schneiderman J.F., Astalan A.P., Kalabukhov A., Johansson C., Winkler D. A new approach for bioassays based on frequency- and time-domain measurements of magnetic nanoparticles. Biosens. Bioelectron. 2010;25:1008–1013. doi: 10.1016/j.bios.2009.09.013. 10.1016/j.bios.2009.09.013 19822413 Ferguson R.M., Khandhar A., Jonasson C., Blomgren J., Johansson C., Krishnan K.M. Size-dependent relaxation properties of monodisperse magnetite nanoparticles measured over seven decades of frequency by AC susceptometry. IEEE Trans. Magn. 2013;49:3441–3444. doi: 10.1109/TMAG.2013.2239621. 10.1109/TMAG.2013.2239621 PMC4248603 25473124 Chung S.H., Hoffmann A., Guslienko K., Bader S.D., Liu C., Kay B., Makowski L., Chen L. J. Appl. Phys. Vol. 97. H; 2005. Biological sensing with magnetic nanoparticles using Brownian relaxation. 10.1063/1.1853694 Ludwig F. Characterization of Magnetic Core-Shell Nanoparticle Suspensions Using ac Susceptibility for Frequencies up to 1 MHz. AIP Conf. Proc. 2010;1311 doi: 10.1063/1.3530020. 10.1063/1.3530020 Ludwig F., Heim E., Schilling M. Characterization of magnetic core-shell nanoparticles by fluxgate magnetorelaxometry, ac susceptibility, transmission electron microscopy and photon correlation spectroscopy—A comparative study. J. Magn. Magn. Mater. 2009;321:1644–1647. doi: 10.1016/j.jmmm.2009.02.105. 10.1016/j.jmmm.2009.02.105 Ludwig F., Mäuselein S., Heim E., Schilling M. Magnetorelaxometry of magnetic nanoparticles in magnetically unshielded environment utilizing a differential fluxgate arrangement. Rev. Sci. Instrum. 2005;76:106102-1–106102-3. doi: 10.1063/1.2069776. 10.1063/1.2069776 Ludwig F., Remmer H., Kuhlmann C., Wawrzik T., Arami H., Ferguson R.M., Krishnan K.M. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy. J. Magn. Magn. Mater. 2014;360:169–173. doi: 10.1016/j.jmmm.2014.02.020. 10.1016/j.jmmm.2014.02.020 PMC4338913 25729125 Ludwig F., Guillaume A., Schilling M., Frickel N., Schmidt A.M. Determination of core and hydrodynamic size distributions of CoFe2O4 nanoparticle suspensions using ac susceptibility measurements. J. Appl. Phys. 2010;108:033918-1–033918-5. doi: 10.1063/1.3463350. 10.1063/1.3463350 Andrés Vergés M., Costo R., Roca A.G., Marco J.F., Goya G.F., Serna C.J., Morales M.P. Uniform water stable magnetite nanoparticles with diameters around the monodomain—multidomain limit. J. Phys. D: Appl. Phys. 2008;41 doi: 10.1088/0022-3727/41/13/134003. 10.1088/0022-3727/41/13/134003 Costo R., Bello V., Robic C., Port M., Marco J.F., Morales M.P., Veintemillas-Verdaguer S. Ultrasmall iron oxide nanoparticles for biomedical applications: Improving the colloidal and magnetic properties. Langmuir. 2012;28:178–185. doi: 10.1021/la203428z. 10.1021/la203428z 22103685 26307966 2016 05 17 2018 11 13 1422-0067 16 8 2015 Aug 20 International journal of molecular sciences Int J Mol Sci Polymer/Iron Oxide Nanoparticle Composites--A Straight Forward and Scalable Synthesis Approach. 19752 19768 19752-68 10.3390/ijms160819752 Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl methacrylate), and poly(caprolactone). Multi-core particles were obtained within the Z-average size range of 130 to 340 nm. With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm) core nanoparticles. The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI) contrast efficacy. Sommertune Jens J SP, Technical Research Institute of Sweden, Box 5607, SE-114 86 Stockholm, Sweden. jens.sommertune@sp.se. Sugunan Abhilash A SP, Technical Research Institute of Sweden, Box 5607, SE-114 86 Stockholm, Sweden. abhilash.sugunan@sp.se. Ahniyaz Anwar A SP, Technical Research Institute of Sweden, Box 5607, SE-114 86 Stockholm, Sweden. anwar.ahniyaz@sp.se. Bejhed Rebecca Stjernberg RS Department of Engineering Sciences, Solid State Physics, Uppsala University, SE-751 21 Uppsala, Sweden. Rebecca.Bejhed@angstrom.uu.se. Sarwe Anna A Acreo Swedish ICT AB, Box 53071, SE-400 14 Göteborg, Sweden. Anna.Sarwe@acreo.se. Johansson Christer C Acreo Swedish ICT AB, Box 53071, SE-400 14 Göteborg, Sweden. Christer.Johansson@acreo.se. Balceris Christoph C Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D-38106 Braunschweig, Germany. c.balceris@tu-bs.de. Ludwig Frank F Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D-38106 Braunschweig, Germany. f.ludwig@tu-bs.de. Posth Oliver O Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany. oliver.posth@ptb.de. Fornara Andrea A SP, Technical Research Institute of Sweden, Box 5607, SE-114 86 Stockholm, Sweden. andrea.fornara@sp.se. eng Journal Article Research Support, Non-U.S. Gov't 2015 08 20 Switzerland Int J Mol Sci 101092791 1422-0067 0 Ferric Compounds 0 Magnetite Nanoparticles 0 Polymers 1K09F3G675 ferric oxide IM Ferric Compounds chemistry Magnetic Resonance Imaging methods Magnetite Nanoparticles chemistry Particle Size Polymers chemistry iron oxide nanoparticle multi core nanocomposite polymer encapsulation single core 2015 7 3 2015 8 7 2015 8 14 2015 8 27 6 0 2015 8 27 6 0 2016 5 18 6 0 2015 8 1 epublish 26307966 PMC4581323 10.3390/ijms160819752 ijms160819752 Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. 10.1021/cr068445e 18543879 Gutierrez L., Costo R., Gruttner C., Westphal F., Gehrke N., Heinke D., Fornara A., Pankhurst Q.A., Johansson C., Veintemillas-Verdaguer S., et al. Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans. 2015;44:2943–2952. doi: 10.1039/C4DT03013C. 10.1039/C4DT03013C 25564784 Colombo M., Carregal-Romero S., Casula M.F., Gutierrez L., Morales M.P., Bohm I.B., Heverhagen J.T., Prosperi D., Parak W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012;41:4306–4334. doi: 10.1039/c2cs15337h. 10.1039/c2cs15337h 22481569 Li S., Qin J., Fornara A., Toprak M., Muhammed M., Kim D.K. Synthesis and magnetic properties of bulk transparent pmma/fe-oxide nanocomposites. Nanotechnology. 2009;20 doi: 10.1088/0957-4484/20/18/185607. 10.1088/0957-4484/20/18/185607 19420623 Thaler M., Roy S., Fornara A., Bitsche M., Qin J., Muhammed M., Salvenmoser W., Rieger G., Fischer A.S., Glueckert R. Visualization and analysis of superparamagnetic iron oxide nanoparticles in the inner ear by light microscopy and energy filtered tem. Nanomed. Nanotechnol. Biol. Med. 2011;7:360–369. doi: 10.1016/j.nano.2010.11.005. 10.1016/j.nano.2010.11.005 21146633 Fornara A., Johansson P., Petersson K., Gustafsson S., Qin J., Olsson E., Ilver D., Krozer A., Muhammed M., Johansson C. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett. 2008;8:3423–3428. doi: 10.1021/nl8022498. 10.1021/nl8022498 18754596 Qin J., Asempah I., Laurent S., Fornara A., Muller R.N., Muhammed M. Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv. Mater. 2009;21:1354–1357. doi: 10.1002/adma.200800764. 10.1002/adma.200800764 Zou J., Zhang W., Poe D., Qin J., Fornara A., Zhang Y., Ramadan U.A., Muhammed M., Pyykkö I. MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine. 2010;5:739–754. doi: 10.2217/nnm.10.45. 10.2217/nnm.10.45 20662645 Okoli C., Fornara A., Qin J., Toprak M.S., Dalhammar G., Muhammed M., Rajarao G.K. Characterization of superparamagnetic iron oxide nanoparticles and its application in protein purification. J. Nanosci. Nanotechnol. 2011;11:10201–10206. doi: 10.1166/jnn.2011.5007. 10.1166/jnn.2011.5007 22413365 Fornara A., Recalenda A., Qin J., Sugunan A., Ye F., Laurent S., Muller R.N., Zou J., Usama A.-R., Toprak M.S., et al. Polymeric/inorganic multifunctional nanoparticles for simultaneous drug delivery and visualization. MRS Proc. 2010;1257 doi: 10.1557/PROC-1257-O04-03. 10.1557/PROC-1257-O04-03 Gustafsson S., Fornara A., Petersson K., Johansson C., Muhammed M., Olsson E. Evolution of structural and magnetic properties of magnetite nanoparticles for biomedical applications. Cryst. Growth Des. 2010;10:2278–2284. doi: 10.1021/cg901602w. 10.1021/cg901602w Ludwig F., Kazakova O., Barquín L.F., Fornara A., Trahms L., Steinhoff U., Svedlindh P., Wetterskog E., Pankhurst Q.A., Southern P., et al. Magnetic, structural, and particle size analysis of single- and multi-core magnetic nanoparticles. IEEE Trans. Magn. 2014;50 doi: 10.1109/TMAG.2014.2321456. 10.1109/TMAG.2014.2321456 Ye F., Laurent S., Fornara A., Astolfi L., Qin J., Roch A., Martini A., Toprak M.S., Muller R.N., Muhammed M. Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T2 contrast agent with tunable proton relaxivities. Contrast Media Mol. Imaging. 2012;7:460–468. doi: 10.1002/cmmi.1473. 10.1002/cmmi.1473 PMC4530524 22821880 Rahman M.M., Elaissari A. Organic-inorganic hybrid magnetic latex. Adv. Polym. Sci. 2010;233:237–281. Tanyolaç D., Özdural A.R. New low cost magnetic material: Magnetic polyvinylbutyral microbeads. React Funct. Polym. 2000;43:279–286. doi: 10.1016/S1381-5148(99)00054-1. 10.1016/S1381-5148(99)00054-1 Hamoudeh M., Faraj A.A., Canet-Soulas E., Bessueille F., Léonard D., Fessi H. Elaboration of plla-based superparamagnetic nanoparticles: Characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int. J. Pharm. 2007;338:248–257. doi: 10.1016/j.ijpharm.2007.01.023. 10.1016/j.ijpharm.2007.01.023 17317054 Hamoudeh M., Fessi H. Preparation, characterization and surface study of poly-epsilon caprolactone magnetic microparticles. J. Colloid Interface Sci. 2006;300:584–590. doi: 10.1016/j.jcis.2006.04.024. 10.1016/j.jcis.2006.04.024 16756986 Lee S.J., Jeong J.R., Shin S.C., Kim J.C., Chang Y.H., Lee K.H., Kim J.D. Magnetic enhancement of iron oxide nanoparticles encapsulated with poly(d,l-latide-co-glycolide) Colloid Surf. A. 2005;255:19–25. doi: 10.1016/j.colsurfa.2004.12.019. 10.1016/j.colsurfa.2004.12.019 Demortiere A., Panissod P., Pichon B.P., Pourroy G., Guillon D., Donnio B., Begin-Colin S. Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale. 2011;3:225–232. doi: 10.1039/C0NR00521E. 10.1039/C0NR00521E 21060937 Ferguson R.M., Khandhar A.P., Jonasson C., Blomgren J., Johansson C., Krishnan K.M. Size-dependent relaxation properties of monodisperse magnetite nanoparticles measured over seven decades of frequency by ac susceptometry. IEEE Trans. Magn. 2013;49:3441–3444. doi: 10.1109/TMAG.2013.2239621. 10.1109/TMAG.2013.2239621 PMC4248603 25473124 Öisjöen F., Schneiderman J.F., Astalan A.P., Kalabukhov A., Johansson C., Winkler D. A new approach for bioassays based on frequency- and time-domain measurements of magnetic nanoparticles. Biosens. Bioelectron. 2010;25:1008–1013. doi: 10.1016/j.bios.2009.09.013. 10.1016/j.bios.2009.09.013 19822413 Ahrentorp F., Astalan A.P., Jonasson C., Blomgren J., Qi B., Mefford O.T., Yan M., Courtois J., Berret J.F., Fresnais J., et al. Sensitive high frequency ac susceptometry in magnetic nanoparticle applications. AIP Conf. Proc. 2010;1311:213–223. Ludwig F., Guillaume A., Schilling M., Frickel N., Schmidt A.M. Determination of core and hydrodynamic size distributions of coFe2O4 nanoparticle suspensions using ac susceptibility measurements. J Appl. Phys. 2010;108 doi: 10.1063/1.3463350. 10.1063/1.3463350 Ahrentorp F., Astalan A., Blomgren J., Jonasson C., Wetterskog E., Svedlindh P., Lak A., Ludwig F., van Ijzendoorn L.J., Westphal F., et al. Effective particle magnetic moment of multi-core particles. J. Magn. Magn. Mater. 2015;380:221–226. doi: 10.1016/j.jmmm.2014.09.070. 10.1016/j.jmmm.2014.09.070 Wiekhorst F., Steinhoff U., Eberbeck D., Trahms L. Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm. Res. 2012;29:1189–1202. doi: 10.1007/s11095-011-0630-3. 10.1007/s11095-011-0630-3 PMC3332344 22161287 Ludwig F., Mäuselein S., Heim E., Schilling M. Magnetorelaxometry of magnetic nanoparticles in magnetically unshielded environment utilizing a differential fluxgate arrangement. Rev. Sci. Instrum. 2005;76:106102. doi: 10.1063/1.2069776. 10.1063/1.2069776 Liu G., Wang Z., Lu J., Xia C., Gao F., Gong Q., Song B., Zhao X., Shuai X., Chen X., et al. Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials. 2011;32:528–537. doi: 10.1016/j.biomaterials.2010.08.099. 10.1016/j.biomaterials.2010.08.099 20869767 Reimer P., Balzer T. Ferucarbotran (resovist): A new clinically approved res-specific contrast agent for contrast-enhanced mri of the liver: Properties, clinical development, and applications. Eur. Radiol. 2003;13:1266–1276. 12764641 Yathindranath V., Rebbouh L., Moore D.F., Miller D.W., Lierop J.V., Hegmann T. A versatile method for the reductive, one-pot synthesis of bare, hydrophilic and hydrophobic magnetite nanoparticles. Adv. Mater. 2011;21:1457–1464. Chantrell R.W., Hoon S.H., Tanner B.K. Time-dependent magnetization in fine-particle ferromagnetic systems. J. Magn. Magn. Mater. 1983;38:133–141. doi: 10.1016/0304-8853(83)90037-9. 10.1016/0304-8853(83)90037-9 Romanus E., Berkov D.V., Prass S., Groβ C., Weitschies W., Weber P. Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry. Nanotechnology. 2003;14:1251–1254. doi: 10.1088/0957-4484/14/12/003. 10.1088/0957-4484/14/12/003 21444978 Eberbeck D., Wiekhorst F., Steinhoff U., Trahms L. Aggregation behaviour of magnetic nanoparticle suspensions investigated by magnetorelaxometry. J. Phys. Condens. Matter. 2006;18:S2829–S2846. doi: 10.1088/0953-8984/18/38/S20. 10.1088/0953-8984/18/38/S20 Ludwig F., Heim E., Schilling M. Characterization of superparamagnetic nanoparticles by analyzing the magnetization and relaxation dynamics using fluxgate magnetometers. J. Appl. Phys. 2007;101 doi: 10.1063/1.2738416. 10.1063/1.2738416 26236482 2015 08 03 2023 11 11 2052-1707 3 3 2015 Jun Pharmacology research & perspectives Pharmacol Res Perspect The discovery of a selective and potent A2a agonist with extended lung retention. e00134 e00134 e00134 10.1002/prp2.134 Although the anti-inflammatory role of the A2a receptor is well established, controversy remains with regard to the therapeutic value for A2a agonists in treatment of inflammatory lung diseases, also as a result of unwanted A2a-mediated cardiovascular effects. In this paper, we describe the discovery and characterization of a new, potent and selective A2a agonist (compound 2) with prolonged lung retention and limited systemic exposure following local administration. To support the lead optimization chemistry program with compound selection and profiling, multiple in vitro and in vivo assays were used, characterizing compound properties, pharmacodynamics (PD), and drug concentrations. Particularly, pharmacokinetic-PD modeling was applied to quantify the effects on the cardiovascular system, and an investigative toxicology study in rats was performed to explore potential myocardial toxicities. Compound 2, in comparison to a reference A2a agonist, UK-432,097, demonstrated higher solubility, lower lipophilicity, lower plasma protein binding, high rat lung retention (28% remaining after 24 h), and was efficacious in a lung inflammatory rat model following intratracheal dosing. Despite these properties, compound 2 did not provide a sufficient therapeutic index, that is, separation of local anti-inflammatory efficacy in the lung from systemic side effects in the cardiovascular system. The plasma concentration that resulted in induction of hypotension (half maximal effective concentration; EC50 0.5 nmol/L) correlated to the in vitro A2a potency (rIC50 0.6 nmol/L). Histopathological lesions in the heart were observed at a dose level which is threefold above the efficacious dose level in the inflammatory rat lung model. In conclusion, compound 2 is a highly potent and selective A2a agonist with significant lung retention after intratracheal administration. Despite its local anti-inflammatory efficacy in rat lung, small margins to the cardiovascular effects suggested limited therapeutic value of this compound for treatment of inflammatory lung disease by the inhaled route. Åstrand Annika B M AB RIA iMed, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Lamm Bergström Eva E RIA iMed, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Zhang Hui H Drug Safety & Metabolism, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Börjesson Lena L RIA iMed, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Söderdahl Therese T Drug Safety & Metabolism, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Wingren Cecilia C RIA iMed, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Jansson Anne-Helene AH RIA iMed, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Smailagic Amir A RIA iMed, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Johansson Camilla C Drug Safety & Metabolism, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Bladh Håkan H AstraZeneca R&D Lund SE-221 87, Lund, Sweden. Shamovsky Igor I RIA iMed, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Tunek Anders A RIA iMed, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. Drmota Tomas T RIA iMed, AstraZeneca R&D Mölndal SE-431 59, Mölndal, Sweden. eng Journal Article 2015 05 04 United States Pharmacol Res Perspect 101626369 2052-1707 A2a Adenosine receptor blood pressure heart rate inflammation lung retention pharmacokinetic-pharmacodynamic therapeutic window 2015 2 5 2015 2 19 2015 8 4 6 0 2015 8 4 6 0 2015 8 4 6 1 2015 5 4 ppublish 26236482 PMC4492750 10.1002/prp2.134 Al Jaroudi W, Iskandrian AE. Regadenoson: a new myocardial stress agent. J Am Coll Cardiol. 2012;54(13):1123–1130. doi: 10.1016/j.jacc.2009.04.089. 10.1016/j.jacc.2009.04.089 19761931 Albassam MA, Smith GS, Macallum GE. Arteriopathy induced by an adenosine agonist-antihypertensive in monkeys. Toxicol Pathol. 1998;26(3):375–80. May-Jun;. doi: 10.1177/019262339802600311. 10.1177/019262339802600311 9608643 Caruso M, Alamo A, Crisafulli E, Raciti C, Fisichella A, Polosa R. Adenosine signaling pathways as potential therapeutic targets in respiratory disease. Expert Opin Ther Targets. 2013;17(7):761–772. doi: 10.1517/14728222.2013.795220. 10.1517/14728222.2013.795220 23642090 Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov. 2013;12(4):265–286. doi: 10.1038/nrd3955. 10.1038/nrd3955 PMC3930074 23535933 Cooper AE, Ferguson D, Grime K. Optimisation of DMPK by the inhaled route: challenges and approaches. Curr Drug Metab. 2012;13:457–473. doi: 10.2174/138920012800166571. 10.2174/138920012800166571 22299825 Deflorian F, Kumar TS, Phan K, Gao ZG, Xu F, Wu H, et al. Evaluation of molecular modeling of agonist binding in light of the crystallographic structure of an agonist-bound A₂A adenosine receptor. J Med Chem. 2012;55(1):538–552. doi: 10.1021/jm201461q. 10.1021/jm201461q PMC3261785 22104008 Dhalla AK, Wong MY, Wang WQ, Biaggioni I, Belardinelli L. Tachycardia caused by A2A adenosine receptor agonists is mediated by direct sympathoexcitation in awake rats. J Pharmacol Exp Ther. 2006;316:695–702. doi: 10.1124/jpet.105.095323. 10.1124/jpet.105.095323 16227469 Fozard JR, Ellis KM, Villela Dantas MF, Tigani B, Mazzoni L. Effects of CGS 21680, a selective adenosine A2A receptor agonist, on allergic airways inflammation in the rat. Eur J Pharmacol. 2002;438(3):183–188. doi: 10.1016/S0014-2999(02)01305-5. 10.1016/S0014-2999(02)01305-5 11909610 Fredholm BB, Cunha RA, Svenningsson P. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr Top Med Chem. 2002;3:1349–1364. doi: 10.2174/1568026033392200. 10.2174/1568026033392200 12570759 Gessi S, Merighi S, Varani K, Borea PA. Adenosine receptors in health and disease. Adv Pharmacol. 2011;61:41–75. doi: 10.1016/B978-0-12-385526-8.00002-3. 10.1016/B978-0-12-385526-8.00002-3 21586355 Harada N, Okajima K, Murakami K, Usune S, Sato C, Ohshima K, et al. Adenosine and selective A(2A) receptor agonists reduce ischemia/reperfusion injury of rat liver mainly by inhibiting leukocyte activation. J Pharmacol Exp Ther. 2000;294:1034–1042. 10945856 Hasko G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG, et al. Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2A receptor-dependent and independent mechanisms. FASEB J. 2000;14:2065–2074. doi: 10.1096/fj.99-0508com. 10.1096/fj.99-0508com 11023991 Johnson SG, Peters S. Advances in pharmacologic stress agents: focus on regadenoson. J Nucl Med Technol. 2010;38(3):163–171. doi: 10.2967/jnmt.109.065581. 10.2967/jnmt.109.065581 20724531 Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B. 2001;105:6474–6487. doi: 10.1021/jp003919d. 10.1021/jp003919d Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature. 2011;474(7352):521–525. doi: 10.1038/nature10136. 10.1038/nature10136 PMC3146096 21593763 Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature. 1997;388:674–678. 9262401 Linden J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol. 2001;41:775–787. doi: 10.1146/annurev.pharmtox.41.1.775. 10.1146/annurev.pharmtox.41.1.775 11264476 Macallum GE, Walker RM, Barsoum NJ, Smith GS. Preclinical toxicity studies of an adenosine agonist, N-(2,2-diphenylethyl) adenosine. Toxicology. 1991;68:21–35. 1871777 Mantell SJ, Stephenson PT, Monaghan SM, Maw GN, Trevethick MA, Yeadon M, et al. Inhaled adenosine A(2A) receptor agonists for the treatment of chronic obstructive pulmonary disease. Bioorg Med Chem Lett. 2008;18(4):1284–1287. doi: 10.1016/j.bmcl.2008.01.033. 10.1016/j.bmcl.2008.01.033 18243699 Mantell SJ, Stephenson PT, Monaghan SM, Maw GN, Trevethick MA, Yeadon M, et al. SAR of a series of inhaled A(2A) agonists and comparison of inhaled pharmacokinetics in a preclinical model with clinical pharmacokinetic data. Bioorg Med Chem Lett. 2009;19(15):4471–4475. doi: 10.1016/j.bmcl.2009.05.027. 10.1016/j.bmcl.2009.05.027 19501510 Mantell S, Jones R, Trevethick M. Design and application of locally delivered agonists of the adenosine A(2A) receptor. Expert Rev Clin Pharmacol. 2010;3(1):55–72. doi: 10.1586/ecp.09.57. 10.1586/ecp.09.57 22111533 Mathôt RA, Cleton A, Soudijn W, IJzerman AP, Danhof M. Pharmacokinetic modelling of the haemodynamic effects of the A2a adenosine receptor agonist CGS 21680C in conscious normotensive rats. Br J Pharmacol. 1995;114:761–768. PMC1510196 7773536 Monopoli A, Casati C, Lozza G, Forlani A, Ongini E. Cardiovascular pharmacology of the A2A adenosine receptor antagonist, SCH 58261, in the rat. J Pharmacol Exp Ther. 1998;285:9–15. 9535988 Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta. 2011;1808(5):1290–1308. doi: 10.1016/j.bbamem.2010.12.017. 10.1016/j.bbamem.2010.12.017 PMC3437328 21185259 Nekooeian AA, Tabrizchi R. Effects of adenosine A2A receptor agonist, CGS 21680, on blood pressure, cardiac index and arterial conductance in anaesthetized rats. Eur J Pharmacol. 1996;307(2):163–169. doi: 10.1016/0014-2999(96)00250-6. 10.1016/0014-2999(96)00250-6 8832218 Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414:916–920. doi: 10.1038/414916a. 10.1038/414916a 11780065 Stepp DW, Van Bibber R, Kroll K, Feigl EO. Quantitative relation between interstitial adenosine concentration and coronary blood flow. Circ Res. 1996;79(3):601–610. doi: 10.1161/01.RES.79.3.601. 10.1161/01.RES.79.3.601 8781493 Still WC, Tempczyk A, Hawlely RC, Hendrickson TA. General treatment of solvation for molecular mechanics. J Am Chem Soc. 1990;112:6127–6129. doi: 10.1021/ja00172a038. 10.1021/ja00172a038 Trevethick MA, Mantell SJ, Stuart EF, Barnard A, Wright KN, Yeadon M. Treating lung inflammation with agonists of the adenosine A2A receptor: promises, problems and potential solutions. Br J Pharmacol. 2008;155(4):463–474. doi: 10.1038/bjp.2008.329. 10.1038/bjp.2008.329 PMC2579671 18846036 Webb RL, McNeal RB, Jr, Barclay BW, Yasay GD. Hemodynamic effects of adenosine agonists in the conscious spontaneously hypertensive rat. J Pharmacol Exp Ther. 1990;254:1090–1099. 2203898 Webb RL, Barclay BW, Graybill SC. Cardiovascular effects of adenosine A2 agonists in the conscious spontaneously hypertensive rat: a comparative study of three structurally distinct ligands. J Pharmacol Exp Ther. 1991;259(3):1203–1212. 1684818 Xu FX, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, et al. Structure of an agonist-bound human A2A adenosine receptor. Science. 2011;332:322–327. doi: 10.1126/science.1202793. 10.1126/science.1202793 PMC3086811 21393508 26225282 2015 07 30 2022 03 17 2192-5682 5 4 2015 Aug Global spine journal Global Spine J A Randomized Controlled Trial Comparing Transforaminal Lumbar Interbody Fusion and Uninstrumented Posterolateral Fusion in the Degenerative Lumbar Spine. 322 328 322-8 10.1055/s-0035-1549033 Study Design Randomized controlled trial. Objective Despite a large number of publications of outcomes after spinal fusion surgery, there is still no consensus on the efficacy of the several different fusion methods. The aim of this study was to determine whether transforaminal lumbar interbody fusion (TLIF) results in an improved clinical outcome compared with uninstrumented posterolateral fusion (PLF) in the surgical treatment for chronic low back pain. Methods This study included 135 patients with degenerative disk disease (n = 96) or postdiskectomy syndrome (n = 39). Inclusion criteria were at least 1 year of back pain with or without leg pain in patients aged 20 to 65 with one- or two-level disease. Exclusion criteria were sequestration of disk hernia, psychosocial instability, isthmic spondylolisthesis, drug abuse, and previous spine surgery other than diskectomy. Pain was assessed by visual analog scale (pain index). Functional disability was quantified by the disability rating index and Oswestry Disability Index. The global outcome was assessed by the patient and classified as much better, better, unchanged, or worse. The patients were randomized to conventional uninstrumented PLF (n = 67) or TLIF (n = 68). PLF was performed in a standardized fashion using autograft. TLIF was performed with pedicle titanium screw fixation and a porous tantalum interbody spacer with interbody and posterolateral autograft. The clinical outcome measurements were obtained preoperatively and at 12 and 24 months postoperatively. The 2-year follow-up rate was 98%. Results The two treatment groups improved significantly from preoperatively to 2 years' follow-up. At final follow-up, the results in the TLIF group were significantly superior to those in the PLF group in pain index (2.0 versus 3.9, p = 0.007) and in disability rating index (22 versus 36, p = 0.003). The Oswestry Disability Index was better in the TLIF group (20 versus 28, p = 0.110, not significant). The global assessment was clearly superior in the TLIF group: 63% of patients scored "much better" in the TLIF group as compared with 48% in the PLF group (p = 0.017). Conclusions The results of the current study support the use of TLIF rather than uninstrumented PLF in the surgical treatment of the degenerative lumbar spine. The less optimal outcome after uninstrumented PLF may be explained by the much higher reoperation rate. Jalalpour Kourosh K Division of Orthopedics, Department of Clinical Science, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden. Neumann Pavel P Department of Orthopaedics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden. Johansson Christer C Department of Orthopaedics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden. Hedlund Rune R Department of Orthopaedics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden. eng Journal Article 2015 03 25 England Global Spine J 101596156 2192-5682 chronic low back pain posterolateral noninstrumented fusion transforaminal lumbar interbody fusion Disclosures Kourosh Jalalpour, none
Pavel Neumann, none
Christer Johansson, none
Rune Hedlund, Grant: Zimmer Spine; Consulting: Depuy2014 11 26 2015 2 4 2015 7 31 6 0 2015 8 1 6 0 2015 8 1 6 1 2015 8 1 ppublish 26225282 PMC4516755 10.1055/s-0035-1549033 1400159 Fritzell P Hägg O Wessberg P Nordwall A; Swedish Lumbar Spine Study Group. 2001 Volvo Award Winner in Clinical Studies: Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group Spine (Phila Pa 1976) 200126232521–2532., discussion 2532–2534 11725230 Babu M A, Coumans J V, Carter B S. et al.A review of lumbar spinal instrumentation: evidence and controversy. J Neurol Neurosurg Psychiatry. 2011;82(9):948–951. 21602520 Frymoyer J W, Selby D K. Segmental instability. Rationale for treatment. Spine (Phila Pa 1976) 1985;10(3):280–286. 3992349 Adams M A, Roughley P J. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 2006;31(18):2151–2161. 16915105 Edgar M A. The nerve supply of the lumbar intervertebral disc. J Bone Joint Surg Br. 2007;89(9):1135–1139. 17905946 Christensen F B, Hansen E S, Eiskjaer S P. et al.Circumferential lumbar spinal fusion with Brantigan cage versus posterolateral fusion with titanium Cotrel-Dubousset instrumentation: a prospective, randomized clinical study of 146 patients. Spine (Phila Pa 1976) 2002;27(23):2674–2683. 12461393 Høy K, Bünger C, Niederman B. et al.Transforaminal lumbar interbody fusion (TLIF) versus posterolateral instrumented fusion (PLF) in degenerative lumbar disorders: a randomized clinical trial with 2-year follow-up. Eur Spine J. 2013;22(9):2022–2029. PMC3777065 23584162 Anjarwalla N K, Morcom R K, Fraser R D. Supplementary stabilization with anterior lumbar intervertebral fusion—a radiologic review. Spine (Phila Pa 1976) 2006;31(11):1281–1287. 16688045 Harms J G, Jeszenszky D. Die posteriore, lumbale, interkorporelle Fusion in unilateraler transforaminaler Technik. Orthop Traumatol. 1998;10:90–102. 17332991 Zou X, Li H, Bünger M, Egund N, Lind M, Bünger C. Bone ingrowth characteristics of porous tantalum and carbon fiber interbody devices: an experimental study in pigs. Spine J. 2004;4(1):99–105. 14749198 Salén B A, Spangfort E V, Nygren A L, Nordemar R. The Disability Rating Index: an instrument for the assessment of disability in clinical settings. J Clin Epidemiol. 1994;47(12):1423–1435. 7730851 Fairbank J C, Couper J, Davies J B, O'Brien J P. The Oswestry low back pain disability questionnaire. Physiotherapy. 1980;66(8):271–273. 6450426 Lenke L G, Bridwell K H, Bullis D, Betz R R, Baldus C, Schoenecker P L. Results of in situ fusion for isthmic spondylolisthesis. J Spinal Disord. 1992;5(4):433–442. 1490041 Ekman P, Möller H, Tullberg T, Neumann P, Hedlund R. Posterior lumbar interbody fusion versus posterolateral fusion in adult isthmic spondylolisthesis. Spine (Phila Pa 1976) 2007;32(20):2178–2183. 17873808 Hägg O Fritzell P Nordwall A; Swedish Lumbar Spine Study Group. The clinical importance of changes in outcome scores after treatment for chronic low back pain Eur Spine J 200312112–20. 12592542 Glassman S D, Copay A G, Berven S H, Polly D W, Subach B R, Carreon L Y. Defining substantial clinical benefit following lumbar spine arthrodesis. J Bone Joint Surg Am. 2008;90(9):1839–1847. 18762642 Ekman P, Möller H, Hedlund R. The long-term effect of posterolateral fusion in adult isthmic spondylolisthesis: a randomized controlled study. Spine J. 2005;5(1):36–44. 15653083 Carragee E J. The rise and fall of the “minimum clinically important difference.”. Spine J. 2010;10(4):283–284. 20362245 Gatchel R J, Mayer T G, Chou R. What does/should the minimum clinically important difference measure? A reconsideration of its clinical value in evaluating efficacy of lumbar fusion surgery. Clin J Pain. 2012;28(5):387–397. 22395333 Copay A G, Subach B R, Glassman S D, Polly D W Jr, Schuler T C. Understanding the minimum clinically important difference: a review of concepts and methods. Spine J. 2007;7(5):541–546. 17448732 Fritzell P Hägg O Wessberg P Nordwall A; Swedish Lumbar Spine Study Group. Chronic low back pain and fusion: a comparison of three surgical techniques: a prospective multicenter randomized study from the Swedish lumbar spine study group Spine (Phila Pa 1976) 200227111131–1141. 12045508 Videbaek T S, Christensen F B, Soegaard R. et al.Circumferential fusion improves outcome in comparison with instrumented posterolateral fusion: long-term results of a randomized clinical trial. Spine (Phila Pa 1976) 2006;31(25):2875–2880. 17139217 Zou X, Li H, Teng X. et al.Pedicle screw fixation enhances anterior lumbar interbody fusion with porous tantalum cages: an experimental study in pigs. Spine (Phila Pa 1976) 2005;30(14):E392–E399. 16025015 Lowe T G, Tahernia A D, O'Brien M F, Smith D A. Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique, and 2-year results. J Spinal Disord Tech. 2002;15(1):31–38. 11891448 Humphreys S C, Hodges S D, Patwardhan A G, Eck J C, Murphy R B, Covington L A. Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine (Phila Pa 1976) 2001;26(5):567–571. 11242386 Wu R H, Fraser J F, Härtl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine (Phila Pa 1976) 2010;35(26):2273–2281. 20581757 Lee C S, Hwang C J, Lee D H, Kim Y T, Lee H S. Fusion rates of instrumented lumbar spinal arthrodesis according to surgical approach: a systematic review of randomized trials. Clin Orthop Surg. 2011;3(1):39–47. PMC3042168 21369477 Bjarke Christensen F, Stender Hansen E, Laursen M, Thomsen K, Bünger C E. Long-term functional outcome of pedicle screw instrumentation as a support for posterolateral spinal fusion: randomized clinical study with a 5-year follow-up. Spine (Phila Pa 1976) 2002;27(12):1269–1277. 12065973 Andersen T, Videbaek T S, Hansen E S, Bünger C, Christensen F B. The positive effect of posterolateral lumbar spinal fusion is preserved at long-term follow-up: a RCT with 11–13 year follow-up. Eur Spine J. 2008;17(2):272–280. PMC2365547 17851701 Fischgrund J S, Mackay M, Herkowitz H N, Brower R, Montgomery D M, Kurz L T. 1997 Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine (Phila Pa 1976) 1997;22(24):2807–2812. 9431616 France J C, Yaszemski M J, Lauerman W C. et al.A randomized prospective study of posterolateral lumbar fusion. Outcomes with and without pedicle screw instrumentation. Spine (Phila Pa 1976) 1999;24(6):553–560. 10101819 Mardjetko S M Connolly P J Shott S Degenerative lumbar spondylolisthesis. A meta-analysis of literature 1970–1993 Spine (Phila Pa 1976) 199419(20, Suppl):2256S–2265S. 7817240 Fritzell P Hägg O Wessberg P Nordwall A; Swedish Lumbar Spine Study Group. Chronic low back pain and fusion: a comparison of three surgical techniques: a prospective multicenter randomized study from the Swedish lumbar spine study group Spine (Phila Pa 1976) 200227111131–1141. 12045508 Zdeblick T A. A prospective, randomized study of lumbar fusion. Preliminary results. Spine (Phila Pa 1976) 1993;18(8):983–991. 8367786 26207625 2016 05 05 2019 12 10 1932-6203 10 7 2015 PloS one PLoS One Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis. e0133903 e0133903 e0133903 10.1371/journal.pone.0133903 It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss. In the brain, fusion of bone marrow-derived cells appears to be restricted to the complex and large Purkinje cells, raising the question whether the size of the recipient cell is important for cell fusion in the central nervous system. Purkinje cells are among the largest neurons in the central nervous system and accordingly can harbor two nuclei. Using a well-characterized model for heterokaryon formation in the cerebellum (experimental autoimmune encephalomyelitis - a mouse model of multiple sclerosis), we report for the first time that green fluorescent protein-labeled bone marrow-derived cells can fuse and form heterokaryons with spinal cord motor neurons. These spinal cord heterokaryons are predominantly located in or adjacent to an active or previously active inflammation site, demonstrating that inflammation and infiltration of immune cells are key for cell fusion in the central nervous system. While some motor neurons were found to contain two nuclei, co-expressing green fluorescent protein and the neuronal marker, neuron-specific nuclear protein, a number of small interneurons also co-expressed green fluorescent protein and the neuronal marker, neuron-specific nuclear protein. These small heterokaryons were scattered in the gray matter of the spinal cord. This novel finding expands the repertoire of neurons that can form heterokaryons with bone marrow-derived cells in the central nervous system, albeit in low numbers, possibly leading to a novel therapy for spinal cord motor neurons or other neurons that are compromised in the central nervous system. Sankavaram Sreenivasa R SR Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. Svensson Mikael A MA Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. Olsson Tomas T Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. Brundin Lou L Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. Johansson Clas B CB Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Public Dental Service at Gällö, Jämtland Härjedalen County Council, Gällö, Sweden. eng Journal Article Research Support, Non-U.S. Gov't 2015 07 24 United States PLoS One 101285081 1932-6203 0 DNA-Binding Proteins 0 Nerve Tissue Proteins 0 NeuN protein, mouse 0 Nuclear Proteins IM Animals Brain pathology Central Nervous System pathology Cerebellum metabolism pathology DNA-Binding Proteins Disease Models, Animal Encephalomyelitis, Autoimmune, Experimental pathology Female Gene Expression Genes, Reporter Giant Cells pathology Interneurons metabolism pathology Mice Motor Neurons metabolism pathology Multiple Sclerosis pathology Nerve Tissue Proteins metabolism Nuclear Proteins metabolism Spinal Cord metabolism pathology Competing Interests: The authors have declared that no competing interests exist.2014 12 31 2015 7 2 2015 7 25 6 0 2015 7 25 6 0 2016 5 6 6 0 2015 7 24 epublish 26207625 PMC4514791 10.1371/journal.pone.0133903 PONE-D-14-58576 Kang H, Kerloc'h A, Rotival M, Xu X, Zhang Q, et al. (2014) Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep 8: 1210–1224. 10.1016/j.celrep.2014.07.032 10.1016/j.celrep.2014.07.032 PMC4471813 25131209 Kaji K, Kudo A (2004) The mechanism of sperm-oocyte fusion in mammals. Reproduction 127: 423–429. 15047933 Huppertz B, Bartz C, Kokozidou M (2006) Trophoblast fusion: fusogenic proteins, syncytins and ADAMs, and other prerequisites for syncytial fusion. Micron 37: 509–517. 16497505 Pajcini KV, Pomerantz JH, Alkan O, Doyonnas R, Blau HM (2008) Myoblasts and macrophages share molecular components that contribute to cell-cell fusion. J Cell Biol 180: 1005–1019. 10.1083/jcb.200707191 10.1083/jcb.200707191 PMC2265408 18332221 Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, et al. (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425: 968–973. 14555960 Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9: 1520–1527. 14625546 Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, et al. (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9: 1528–1532. 14625543 Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279: 1528–1530. 9488650 Fukada S, Miyagoe-Suzuki Y, Tsukihara H, Yuasa K, Higuchi S, et al. (2002) Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. J Cell Sci 115: 1285–1293. 11884527 LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111: 589–601. 12437931 Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6: 1229–1234. 11062533 Rizvi AZ, Swain JR, Davies PS, Bailey AS, Decker AD, et al. (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci U S A 103: 6321–6325. PMC1435365 16606845 Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci U S A 100: 2088–2093. PMC149963 12576546 Weimann JM, Johansson CB, Trejo A, Blau HM (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5: 959–966. 14562057 Johansson CB, Youssef S, Koleckar K, Holbrook C, Doyonnas R, et al. (2008) Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol 10: 575–583. 10.1038/ncb1720 10.1038/ncb1720 PMC4230437 18425116 Magrassi L, Grimaldi P, Ibatici A, Corselli M, Ciardelli L, et al. (2007) Induction and survival of binucleated Purkinje neurons by selective damage and aging. J Neurosci 27: 9885–9892. PMC6672639 17855603 Nern C, Wolff I, Macas J, von Randow J, Scharenberg C, et al. (2009) Fusion of hematopoietic cells with Purkinje neurons does not lead to stable heterokaryon formation under noninvasive conditions. J Neurosci 29: 3799–3807. 10.1523/JNEUROSCI.5848-08.2009 10.1523/JNEUROSCI.5848-08.2009 PMC6665027 19321776 Nygren JM, Liuba K, Breitbach M, Stott S, Thoren L, et al. (2008) Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat Cell Biol 10: 584–592. 10.1038/ncb1721 10.1038/ncb1721 18425115 Kemp K, Gray E, Wilkins A, Scolding N (2012) Purkinje cell fusion and binucleate heterokaryon formation in multiple sclerosis cerebellum. Brain 135: 2962–2972. 10.1093/brain/aws226 10.1093/brain/aws226 22975392 Sullivan S, Eggan K (2006) The potential of cell fusion for human therapy. Stem Cell Rev 2: 341–349. 17848721 Willenbring H (2005) Therapeutic cell fusion. Br J Surg 92: 923–924. 16034848 Gibson AJ, Karasinski J, Relvas J, Moss J, Sherratt TG, et al. (1995) Dermal fibroblasts convert to a myogenic lineage in mdx mouse muscle. Journal of cell science 108 (Pt 1): 207–214. 7738097 Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422: 901–904. 12665833 Bae JS, Furuya S, Shinoda Y, Endo S, Schuchman EH, et al. (2005) Neurodegeneration augments the ability of bone marrow-derived mesenchymal stem cells to fuse with Purkinje neurons in Niemann-Pick type C mice. Hum Gene Ther 16: 1006–1011. 16076258 Bae JS, Han HS, Youn DH, Carter JE, Modo M, et al. (2007) Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 25: 1307–1316. 17470534 Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, et al. (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96: 25–34. 9989494 Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, et al. (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420: 78–84. 12422218 Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466: 356–365. 14556293 Sanges D, Romo N, Simonte G, Di Vicino U, Tahoces AD, et al. (2013) Wnt/beta-catenin signaling triggers neuron reprogramming and regeneration in the mouse retina. Cell Rep 4: 271–286. 10.1016/j.celrep.2013.06.015 10.1016/j.celrep.2013.06.015 23850287 Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J, et al. (2014) Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 12: e1001874 10.1371/journal.pbio.1001874 10.1371/journal.pbio.1001874 PMC4043485 24893313 25921080 2016 06 20 2018 11 13 1559-064X 25 5 2015 Sep-Oct Journal of exposure science & environmental epidemiology J Expo Sci Environ Epidemiol Potential health impacts of changes in air pollution exposure associated with moving traffic into a road tunnel. 524 531 524-31 10.1038/jes.2015.24 A planned 21 km bypass (18 km within a tunnel) in Stockholm is expected to reduce ambient air exposure to traffic emissions, but same time tunnel users could be exposed to high concentrations of pollutants. For the health impacts calculations in 2030, the change in annual ambient NOX and PM10 exposure of the general population was modelled in 100 × 100 m(2) grids for Greater Stockholm area. The tunnel exposure was estimated based on calculated annual average NOX concentrations, time spent in tunnel and number of tunnel users. For the general population, we estimate annually 23.7 (95% CI: 17.7-32.3) fewer premature deaths as ambient concentrations are reduced. At the same time, tunnel users will be exposed to NOX levels up to 2000 μg/m(-3). Passing through the whole tunnel two times on working days would correspond to an additional annual NOX exposure of 9.6 μg/m(3). Assuming that there will be ~55,000 vehicles daily each way and 1.3 persons of 30-74 years of age in each vehicle, we estimate the tunnel exposure to result in 20.6 (95% CI: 14.1-25.6) premature deaths annually. If there were more persons per vehicle, or older and vulnerable people travelling, or tunnel dispersion conditions worsen, the adverse effect would become larger. Orru Hans H 1] Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden [2] Department of Public Health, University of Tartu, Tartu, Estonia. Lövenheim Boel B Stockholm Environment and Health Administration, Stockholm, Sweden. Johansson Christer C 1] Stockholm Environment and Health Administration, Stockholm, Sweden [2] Department of Applied Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden. Forsberg Bertil B Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden. eng Journal Article Research Support, Non-U.S. Gov't 2015 04 29 United States J Expo Sci Environ Epidemiol 101262796 1559-0631 0 Air Pollutants 0 Nitrogen Oxides 0 Particulate Matter 0 Vehicle Emissions IM Air Pollutants adverse effects analysis Air Pollution adverse effects analysis Environmental Monitoring methods Health Status Humans Models, Theoretical Mortality Nitrogen Oxides adverse effects analysis Particle Size Particulate Matter adverse effects analysis Risk Assessment methods Sweden Urban Population Vehicle Emissions analysis 2014 4 3 2014 12 18 2014 12 27 2015 4 30 6 0 2015 4 30 6 0 2016 6 21 6 0 ppublish 25921080 10.1038/jes.2015.24 jes201524 JAMA. 2002 Mar 6;287(9):1132-41 11879110 Lancet. 2002 Oct 19;360(9341):1203-9 12401246 Eur Respir J. 2000 Apr;15(4):716-24 10780764 Atmos Environ (1994). 2012 Nov 1;59:578-586 23888122 Epidemiology. 2006 Sep;17(5):545-51 16755270 JAMA. 1998 Nov 18;280(19):1690-1 9832001 Int J Epidemiol. 1999 Aug;28(4):640-4 10480690 Environ Int. 2010 Jan;36(1):36-45 19878999 Allergy. 2010 Jan;65(1):48-55 19796226 Lancet. 2000 Sep 2;356(9232):795-801 11022926 Environ Health Perspect. 2007 Apr;115(4):507-12 17450216 Am J Respir Crit Care Med. 2011 Jan 1;183(1):73-8 20656944 Sci Total Environ. 2004 Apr 5;321(1-3):71-85 15050386 Lancet. 2009 Dec 19;374(9707):2091-103 19942276 Int Arch Occup Environ Health. 2007 Nov;81(2):159-64 17492462 Part Fibre Toxicol. 2010 Oct 07;7:29 20929559 Swiss Med Wkly. 2012 May 31;142:w13597 22653425 Occup Environ Med. 1998 Feb;55(2):115-8 9614396 Environ Health Perspect. 2010 Sep;118(9):1189-95 20382579 Environ Health Perspect. 2011 Oct;119(10):1373-8 21672679 Environ Health. 2010 Jun 15;9:26 20550697 Environ Health Perspect. 2009 May;117(5):772-7 19479020 Sci Total Environ. 2013 Apr 1;449:390-400 23454700 Occup Environ Med. 2005 Jul;62(7):453-60 15961621 Eur Respir J. 2005 Aug;26(2):309-18 16055881 J Expo Sci Environ Epidemiol. 2013 Sep-Oct;23(5):506-12 23321863 Environ Health. 2009 Mar 03;8:7 19257892 J Occup Environ Med. 2010 Mar;52(3):324-31 20190650 Epidemiology. 2007 Jan;18(1):95-103 17149139 Int J Occup Med Environ Health. 1998;11(1):37-57 9637994 Int J Occup Environ Health. 2001 Jan-Mar;7(1):23-30 11210009 Environ Health Perspect. 2012 Mar;120(3):367-72 22389220 Epidemiology. 2010 Nov;21(6):892-902 20811287 Am J Respir Crit Care Med. 2009 Apr 1;179(7):579-87 19151198 N Engl J Med. 2007 Dec 6;357(23):2348-58 18057337 Inhal Toxicol. 2008 Apr;20(6):533-45 18444007 Environ Health Perspect. 2004 Apr;112(5):610-5 15064169 Eur Respir J. 2009 Jun;33(6):1261-7 19251785 Epidemiology. 2005 Nov;16(6):727-36 16222161 Eur J Epidemiol. 2006;21(6):449-58 16826453 Occup Environ Med. 2013 Mar;70(3):179-86 23220504 Environ Monit Assess. 2007 Apr;127(1-3):477-87 16983585 Inhal Toxicol. 2007 Feb;19(2):133-40 17169860 Environ Health Perspect. 2012 Mar;120(3):431-6 22182596 Environ Health Perspect. 2009 Jul;117(7):1089-94 19654918 Eur Respir J. 2007 Apr;29(4):699-705 17251238 Respir Med. 2010 Dec;104(12):1912-8 20621461 25904164 2016 04 04 2018 12 02 1552-8618 34 9 2015 Sep Environmental toxicology and chemistry Environ Toxicol Chem Long-term effects of the antibacterial agent triclosan on marine periphyton communities. 2067 2077 2067-77 10.1002/etc.3030 Triclosan is a widely used antibacterial agent that has become a ubiquitous contaminant in freshwater, estuary, and marine environments. Concerns about potential adverse effects of triclosan have been described in several recent risk assessments. Its effects on freshwater microbial communities have been well studied, but studies addressing effects on marine microbial communities are scarce. In the present study, the authors describe short- and long-term effects of triclosan on marine periphyton (microbial biofilm) communities. Short-term effects on photosynthesis were estimated after 60 min to 210 min of exposure. Long-term effects on photosynthesis, chlorophyll a fluorescence, pigment content, community tolerance, and bacterial carbon utilization were studied after exposing periphyton for 17 d in flow-through microcosms to 0.316 nM to 10,000 nM triclosan. Results from the short-term studies show that triclosan is toxic to periphyton photosynthesis. Half maximal effective concentration (EC50) values of 1080 nM and 3000 nM were estimated using (14)CO2-incorporation and pulse amplitude modulation (PAM) fluorescence measurements, respectively. After long-term triclosan exposure in flow-through microcosms, photosynthesis estimated using PAM fluorometry was not inhibited by triclosan concentrations up to 1000 nM but instead increased with increasing triclosan concentration. Similarly, at exposure concentrations of 31.6 nM and higher, triclosan caused an increase in photosynthetic pigments. At 316 nM triclosan, the pigment amounts were increased by a factor of 1.4 to 1.9 compared with the control level. Pollution-induced community tolerance was observed for algae and cyanobacteria at 100 nM triclosan and higher. Despite the widespread use of triclosan as an antibacterial agent, the compound did not have any effects on bacterial carbon utilization after long-term exposure. © 2015 SETAC. Eriksson K Martin KM Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden. Johansson C Henrik CH Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. Fihlman Viktor V Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. Grehn Alexander A Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. Sanli Kemal K Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. Andersson Mats X MX Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. Blanck Hans H Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. Arrhenius Åsa Å Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. Sircar Triranta T Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. Backhaus Thomas T Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. eng Journal Article Research Support, Non-U.S. Gov't 2015 06 24 United States Environ Toxicol Chem 8308958 0730-7268 0 Anti-Bacterial Agents 0 Carbon Radioisotopes 0 Water Pollutants, Chemical 1406-65-1 Chlorophyll 142M471B3J Carbon Dioxide 4NM5039Y5X Triclosan YF5Q9EJC8Y Chlorophyll A IM Anti-Bacterial Agents chemistry toxicity Biofilms drug effects Carbon Dioxide metabolism Carbon Radioisotopes chemistry Chlorophyll metabolism Chlorophyll A Chlorophyta drug effects metabolism Chromatography, High Pressure Liquid Cyanobacteria drug effects physiology Drug Resistance Fluorometry Photosynthesis drug effects Time Factors Triclosan chemistry toxicity Water Pollutants, Chemical chemistry toxicity Biofilm Irgasan Microbial toxicology Mode of action Personal care products Pollution-induced community tolerance (PICT) 2014 8 1 2014 9 25 2015 4 19 2015 4 24 6 0 2015 4 24 6 0 2016 4 5 6 0 ppublish 25904164 10.1002/etc.3030 25900886 2015 08 24 2015 06 08 1096-0341 482 2015 Aug Virology Virology Acetylation of intragenic histones on HPV16 correlates with enhanced HPV16 gene expression. 244 259 244-59 10.1016/j.virol.2015.02.053 S0042-6822(15)00187-7 We report that many histone modifications are unevenly distributed over the HPV16 genome in cervical cancer cells as well as in HPV16-immortalized keratinocytes. For example, H3K36me3 and H3K9Ac that are common in highly expressed cellular genes and over exons, were more common in the early than in the late region of the HPV16 genome. In contrast, H3K9me3, H4K20me3, H2BK5me1 and H4K16Ac were more frequent in the HPV16 late region. Furthermore, a region encompassing the HPV16 early polyadenylation signal pAE displayed high levels of histone H3 acetylation. Histone deacetylase (HDAC) inhibitors caused a 2- to 8-fold induction of HPV16 early and late mRNAs in cervical cancer cells and in immortalized keratinocytes, while at the same time increasing the levels of acetylated histones in the cells and on the HPV16 genome specifically. We concluded that increased histone acetylation on the HPV16 genome correlates with increased HPV16 gene expression. Copyright © 2015 Elsevier Inc. All rights reserved. Johansson Cecilia C Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Jamal Fattah Tavan T Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Yu Haoran H Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Nygren Jakob J Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Mossberg Ann-Kristin AK Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Schwartz Stefan S Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Electronic address: Stefan.Schwartz@med.lu.se. eng Journal Article Research Support, Non-U.S. Gov't 2015 04 17 United States Virology 0110674 0042-6822 0 Histones IM Acetylation Gene Expression Regulation, Viral Histones metabolism Host-Pathogen Interactions Human papillomavirus 16 genetics Humans Protein Processing, Post-Translational Epigenetics H2BK5me1 H3K36me3 H3K9Ac H3K9me3 H4K20me3 HDAC inhibitor HPV16 Histone marks Hnrnp Panobinostat Papillomavirus Polyadenylation Quisinostat SR proteins Splicing 2014 12 10 2015 1 23 2015 2 25 2015 4 23 6 0 2015 4 23 6 0 2015 8 25 6 0 ppublish 25900886 10.1016/j.virol.2015.02.053 S0042-6822(15)00187-7 25897172 2015 07 14 2020 12 09 1540-9538 212 5 2015 May 04 The Journal of experimental medicine J Exp Med Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. 699 714 699-714 10.1084/jem.20140825 Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)-coupled retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN-dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN-mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation. © 2015 Goritzka et al. Goritzka Michelle M Centre for Respiratory Infection, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London W2 1PG, England, UK. Makris Spyridon S Centre for Respiratory Infection, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London W2 1PG, England, UK. Kausar Fahima F Centre for Respiratory Infection, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London W2 1PG, England, UK. Durant Lydia R LR Centre for Respiratory Infection, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London W2 1PG, England, UK. Pereira Catherine C Centre for Respiratory Infection, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London W2 1PG, England, UK. Kumagai Yutaro Y Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan. Culley Fiona J FJ Centre for Respiratory Infection, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London W2 1PG, England, UK. Mack Matthias M University Hospital Regensburg, 93042 Regensburg, Germany. Akira Shizuo S Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan. Johansson Cecilia C Centre for Respiratory Infection, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London W2 1PG, England, UK c.johansson@imperial.ac.uk. eng G0800311 Medical Research Council United Kingdom Journal Article Research Support, Non-U.S. Gov't 2015 04 20 United States J Exp Med 2985109R 0022-1007 0 Adaptor Proteins, Signal Transducing 0 IPS-1 protein, mouse 0 Interferon Type I 0 Membrane Proteins 0 Nerve Tissue Proteins 0 Receptors, Cell Surface 0 Robo3 protein, mouse IM Adaptor Proteins, Signal Transducing genetics immunology Animals Immunity, Innate Interferon Type I genetics immunology Macrophages, Alveolar immunology pathology Membrane Proteins genetics immunology Mice Mice, Knockout Monocytes immunology pathology Nerve Tissue Proteins genetics immunology Pneumonia, Viral genetics immunology pathology Receptors, Cell Surface Respiratory Syncytial Virus Infections genetics immunology pathology Respiratory Syncytial Viruses immunology 2014 4 30 2015 3 24 2015 4 22 6 0 2015 4 22 6 0 2015 7 15 6 0 2015 11 4 ppublish 25897172 PMC4419339 10.1084/jem.20140825 jem.20140825 Asselin-Paturel C., Boonstra A., Dalod M., Durand I., Yessaad N., Dezutter-Dambuyant C., Vicari A., O’Garra A., Biron C., Brière F., and Trinchieri G.. 2001. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2:1144–1150 10.1038/ni736 10.1038/ni736 11713464 Awomoyi A.A., Rallabhandi P., Pollin T.I., Lorenz E., Sztein M.B., Boukhvalova M.S., Hemming V.G., Blanco J.C.G., and Vogel S.N.. 2007. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J. Immunol. 179:3171–3177 10.4049/jimmunol.179.5.3171 10.4049/jimmunol.179.5.3171 17709532 Bartlett N.W., Slater L., Glanville N., Haas J.J., Caramori G., Casolari P., Clarke D.L., Message S.D., Aniscenko J., Kebadze T., et al. . 2012. Defining critical roles for NF-κB p65 and type I interferon in innate immunity to rhinovirus. EMBO Mol. Med. 4:1244–1260 10.1002/emmm.201201650 10.1002/emmm.201201650 PMC3531601 23165884 Behera A.K., Kumar M., Lockey R.F., and Mohapatra S.S.. 2002. 2′-5′ Oligoadenylate synthetase plays a critical role in interferon-γ inhibition of respiratory syncytial virus infection of human epithelial cells. J. Biol. Chem. 277:25601–25608 10.1074/jbc.M200211200 10.1074/jbc.M200211200 11980899 Bhoj V.G., Sun Q., Bhoj E.J., Somers C., Chen X., Torres J.P., Mejias A., Gomez A.M., Jafri H., Ramilo O., and Chen Z.J.. 2008. MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proc. Natl. Acad. Sci. USA. 105:14046–14051 10.1073/pnas.0804717105 10.1073/pnas.0804717105 PMC2532974 18780793 Borchers A.T., Chang C., Gershwin M.E., and Gershwin L.J.. 2013. Respiratory syncytial virus—a comprehensive review. Clin. Rev. Allergy Immunol. 45:331–379 10.1007/s12016-013-8368-9 10.1007/s12016-013-8368-9 PMC7090643 23575961 Boyapalle S., Wong T., Garay J., Teng M., San Juan-Vergara H., Mohapatra S., and Mohapatra S.. 2012. Respiratory syncytial virus NS1 protein colocalizes with mitochondrial antiviral signaling protein MAVS following infection. PLoS ONE. 7:e29386 10.1371/journal.pone.0029386 10.1371/journal.pone.0029386 PMC3288005 22383950 Conrady C.D., Zheng M., Mandal N.A., van Rooijen N., and Carr D.J.J.. 2013. IFN-α-driven CCL2 production recruits inflammatory monocytes to infection site in mice. Mucosal Immunol. 6:45–55 10.1038/mi.2012.46 10.1038/mi.2012.46 PMC3449026 22692455 Crane M.J., Hokeness-Antonelli K.L., and Salazar-Mather T.P.. 2009. Regulation of inflammatory monocyte/macrophage recruitment from the bone marrow during murine cytomegalovirus infection: role for type I interferons in localized induction of CCR2 ligands. J. Immunol. 183:2810–2817 10.4049/jimmunol.0900205 10.4049/jimmunol.0900205 PMC2911023 19620305 Culley F.J., Pollott J., and Openshaw P.J.M.. 2002. Age at first viral infection determines the pattern of T cell–mediated disease during reinfection in adulthood. J. Exp. Med. 196:1381–1386 10.1084/jem.20020943 10.1084/jem.20020943 PMC2193991 12438429 Culley F.J., Pennycook A.M.J., Tregoning J.S., Hussell T., and Openshaw P.J.M.. 2006. Differential chemokine expression following respiratory virus infection reflects Th1- or Th2-biased immunopathology. J. Virol. 80:4521–4527 10.1128/JVI.80.9.4521-4527.2006 10.1128/JVI.80.9.4521-4527.2006 PMC1472012 16611912 Davidson S., Crotta S., McCabe T.M., and Wack A.. 2014. Pathogenic potential of interferon αβ in acute influenza infection. Nat. Commun. 5:3864 10.1038/ncomms4864 10.1038/ncomms4864 PMC4033792 24844667 Demoor T., Petersen B.C., Morris S., Mukherjee S., Ptaschinski C., De Almeida Nagata D.E., Kawai T., Ito T., Akira S., Kunkel S.L., et al. . 2012. IPS-1 signaling has a nonredundant role in mediating antiviral responses and the clearance of respiratory syncytial virus. J. Immunol. 189:5942–5953 10.4049/jimmunol.1201763 10.4049/jimmunol.1201763 PMC3888965 23136205 Deshmane S.L., Kremlev S., Amini S., and Sawaya B.E.. 2009. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res. 29:313–326 10.1089/jir.2008.0027 10.1089/jir.2008.0027 PMC2755091 19441883 Durant L.R., Pereira C., Boakye A., Makris S., Kausar F., Goritzka M., and Johansson C.. 2014. DNGR-1 is dispensable for CD8+ T-cell priming during respiratory syncytial virus infection. Eur. J. Immunol. 44:2340–2348 10.1002/eji.201444454 10.1002/eji.201444454 24777856 El Saleeby C.M., and Devincenzo J.P.. 2011. Respiratory syncytial virus load and disease severity in the community. J. Med. Virol. 83:904–905 10.1002/jmv.22039 10.1002/jmv.22039 21412798 Everitt A.R., Clare S., McDonald J.U., Kane L., Harcourt K., Ahras M., Lall A., Hale C., Rodgers A., Young D.B., et al. . 2013. Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model. PLoS ONE. 8:e80723 10.1371/journal.pone.0080723 10.1371/journal.pone.0080723 PMC3836756 24278312 Garofalo R.P., Patti J., Hintz K.A., Hill V., Ogra P.L., and Welliver R.C.. 2001. Macrophage inflammatory protein-1alpha (not T helper type 2 cytokines) is associated with severe forms of respiratory syncytial virus bronchiolitis. J. Infect. Dis. 184:393–399 10.1086/322788 10.1086/322788 11471095 Goritzka M., Durant L.R., Pereira C., Salek-Ardakani S., Openshaw P.J.M., and Johansson C.. 2014. Alpha/beta interferon receptor signaling amplifies early proinflammatory cytokine production in the lung during respiratory syncytial virus infection. J. Virol. 88:6128–6136 10.1128/JVI.00333-14 10.1128/JVI.00333-14 PMC4093897 24648449 Goubau D., Deddouche S., and Reis e Sousa C.. 2013. Cytosolic sensing of viruses. Immunity. 38:855–869 10.1016/j.immuni.2013.05.007 10.1016/j.immuni.2013.05.007 PMC7111113 23706667 Grainger J.R., Wohlfert E.A., Fuss I.J., Bouladoux N., Askenase M.H., Legrand F., Koo L.Y., Brenchley J.M., Fraser I.D.C., and Belkaid Y.. 2013. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat. Med. 19:713–721 10.1038/nm.3189 10.1038/nm.3189 PMC3755478 23708291 Haeberle H.A., Kuziel W.A., Dieterich H.J., Casola A., Gatalica Z., and Garofalo R.P.. 2001. Inducible expression of inflammatory chemokines in respiratory syncytial virus-infected mice: role of MIP-1α in lung pathology. J. Virol. 75:878–890 10.1128/JVI.75.2.878-890.2001 10.1128/JVI.75.2.878-890.2001 PMC113984 11134301 Helft J., Manicassamy B., Guermonprez P., Hashimoto D., Silvin A., Agudo J., Brown B.D., Schmolke M., Miller J.C., Leboeuf M., et al. . 2012. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J. Clin. Invest. 122:4037–4047 10.1172/JCI60659 10.1172/JCI60659 PMC3484433 23041628 Herold S., Steinmueller M., von Wulffen W., Cakarova L., Pinto R., Pleschka S., Mack M., Kuziel W.A., Corazza N., Brunner T., et al. . 2008. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J. Exp. Med. 205:3065–3077 10.1084/jem.20080201 10.1084/jem.20080201 PMC2605231 19064696 Hussell T., and Bell T.J.. 2014. Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol. 14:81–93 10.1038/nri3600 10.1038/nri3600 24445666 Iijima N., Mattei L.M., and Iwasaki A.. 2011. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc. Natl. Acad. Sci. USA. 108:284–289 10.1073/pnas.1005201108 10.1073/pnas.1005201108 PMC3017177 21173243 Janssen R., Bont L., Siezen C.L.E., Hodemaekers H.M., Ermers M.J., Doornbos G., van ’t Slot R., Wijmenga C., Goeman J.J., Kimpen J.L., et al. . 2007. Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. J. Infect. Dis. 196:826–834 10.1086/520886 10.1086/520886 17703412 Jewell N.A., Vaghefi N., Mertz S.E., Akter P., Peebles R.S. Jr, Bakaletz L.O., Durbin R.K., Flaño E., and Durbin J.E.. 2007. Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. J. Virol. 81:9790–9800 10.1128/JVI.00530-07 10.1128/JVI.00530-07 PMC2045394 17626092 Kumagai Y., Takeuchi O., Kato H., Kumar H., Matsui K., Morii E., Aozasa K., Kawai T., and Akira S.. 2007. Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity. 27:240–252 10.1016/j.immuni.2007.07.013 10.1016/j.immuni.2007.07.013 17723216 Lee D.C.P., Harker J.A.E., Tregoning J.S., Atabani S.F., Johansson C., Schwarze J., and Openshaw P.J.M.. 2010. CD25+ natural regulatory T cells are critical in limiting innate and adaptive immunity and resolving disease following respiratory syncytial virus infection. J. Virol. 84:8790–8798 10.1128/JVI.00796-10 10.1128/JVI.00796-10 PMC2919030 20573822 Lin K.L., Suzuki Y., Nakano H., Ramsburg E., and Gunn M.D.. 2008. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 180:2562–2572 10.4049/jimmunol.180.4.2562 10.4049/jimmunol.180.4.2562 18250467 Ling Z., Tran K.C., and Teng M.N.. 2009. Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of beta interferon transcription by interacting with RIG-I. J. Virol. 83:3734–3742 10.1128/JVI.02434-08 10.1128/JVI.02434-08 PMC2663251 19193793 Liu P., Jamaluddin M., Li K., Garofalo R.P., Casola A., and Brasier A.R.. 2007. Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J. Virol. 81:1401–1411 10.1128/JVI.01740-06 10.1128/JVI.01740-06 PMC1797494 17108032 Loebbermann J., Thornton H., Durant L., Sparwasser T., Webster K.E., Sprent J., Culley F.J., Johansson C., and Openshaw P.J.. 2012. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 5:161–172 10.1038/mi.2011.62 10.1038/mi.2011.62 PMC3282434 22236998 Loo Y.-M., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-Sobrido L., Akira S., Gill M.A., García-Sastre A., Katze M.G., and Gale M. Jr. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82:335–345 10.1128/JVI.01080-07 10.1128/JVI.01080-07 PMC2224404 17942531 Mack M., Cihak J., Simonis C., Luckow B., Proudfoot A.E., Plachý J., Brühl H., Frink M., Anders H.J., Vielhauer V., et al. . 2001. Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J. Immunol. 166:4697–4704 10.4049/jimmunol.166.7.4697 10.4049/jimmunol.166.7.4697 11254730 Majer O., Bourgeois C., Zwolanek F., Lassnig C., Kerjaschki D., Mack M., Müller M., and Kuchler K.. 2012. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog. 8:e1002811 10.1371/journal.ppat.1002811 10.1371/journal.ppat.1002811 PMC3406095 22911155 Marr N., Turvey S.E., and Grandvaux N.. 2013. Pathogen recognition receptor crosstalk in respiratory syncytial virus sensing: a host and cell type perspective. Trends Microbiol. 21:568–574 10.1016/j.tim.2013.08.006 10.1016/j.tim.2013.08.006 PMC4848032 24119913 McNamara P.S., Flanagan B.F., Hart C.A., and Smyth R.L.. 2005. Production of chemokines in the lungs of infants with severe respiratory syncytial virus bronchiolitis. J. Infect. Dis. 191:1225–1232 10.1086/428855 10.1086/428855 15776367 Merolla R., Rebert N.A., Tsiviste P.T., Hoffmann S.P., and Panuska J.R.. 1995. Respiratory syncytial virus replication in human lung epithelial cells: inhibition by tumor necrosis factor alpha and interferon beta. Am. J. Respir. Crit. Care Med. 152:1358–1366 10.1164/ajrccm.152.4.7551395 10.1164/ajrccm.152.4.7551395 7551395 Messier E.M., Mason R.J., and Kosmider B.. 2012. Efficient and rapid isolation and purification of mouse alveolar type II epithelial cells. Exp. Lung Res. 38:363–373 10.3109/01902148.2012.713077 10.3109/01902148.2012.713077 22888851 Miller A.L., Bowlin T.L., and Lukacs N.W.. 2004. Respiratory syncytial virus-induced chemokine production: linking viral replication to chemokine production in vitro and in vivo. J. Infect. Dis. 189:1419–1430 10.1086/382958 10.1086/382958 15073679 Narasaraju T., Ng H.H., Phoon M.C., and Chow V.T.K.. 2010. MCP-1 antibody treatment enhances damage and impedes repair of the alveolar epithelium in influenza pneumonitis. Am. J. Respir. Cell Mol. Biol. 42:732–743 10.1165/rcmb.2008-0423OC 10.1165/rcmb.2008-0423OC PMC2891499 19617401 Perkins S.M., Webb D.L., Torrance S.A., El Saleeby C., Harrison L.M., Aitken J.A., Patel A., and DeVincenzo J.P.. 2005. Comparison of a real-time reverse transcriptase PCR assay and a culture technique for quantitative assessment of viral load in children naturally infected with respiratory syncytial virus. J. Clin. Microbiol. 43:2356–2362 10.1128/JCM.43.5.2356-2362.2005 10.1128/JCM.43.5.2356-2362.2005 PMC1153767 15872266 Plantinga M., Guilliams M., Vanheerswynghels M., Deswarte K., Branco-Madeira F., Toussaint W., Vanhoutte L., Neyt K., Killeen N., Malissen B., et al. . 2013. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 38:322–335 10.1016/j.immuni.2012.10.016 10.1016/j.immuni.2012.10.016 23352232 Pribul P.K., Harker J., Wang B., Wang H., Tregoning J.S., Schwarze J., and Openshaw P.J.M.. 2008. Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J. Virol. 82:4441–4448 10.1128/JVI.02541-07 10.1128/JVI.02541-07 PMC2293049 18287232 Ravi L.I., Li L., Sutejo R., Chen H., Wong P.S., Tan B.H., and Sugrue R.J.. 2013. A systems-based approach to analyse the host response in murine lung macrophages challenged with respiratory syncytial virus. BMC Genomics. 14:190 10.1186/1471-2164-14-190 10.1186/1471-2164-14-190 PMC3618260 23506210 Rutigliano J.A., and Graham B.S.. 2004. Prolonged production of TNF-α exacerbates illness during respiratory syncytial virus infection. J. Immunol. 173:3408–3417 10.4049/jimmunol.173.5.3408 10.4049/jimmunol.173.5.3408 15322205 Samstein M., Schreiber H.A., Leiner I.M., Susac B., Glickman M.S., and Pamer E.G.. 2013. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife. 2:e01086. PMC3820971 24220507 Scagnolari C., Midulla F., Selvaggi C., Monteleone K., Bonci E., Papoff P., Cangiano G., Di Marco P., Moretti C., Pierangeli A., and Antonelli G.. 2012. Evaluation of viral load in infants hospitalized with bronchiolitis caused by respiratory syncytial virus. Med. Microbiol. Immunol. (Berl.). 201:311–317 10.1007/s00430-012-0233-6 10.1007/s00430-012-0233-6 PMC7086883 22406873 Schijf M.A., Lukens M.V., Kruijsen D., van Uden N.O.P., Garssen J., Coenjaerts F.E.J., Van’t Land B., and van Bleek G.M.. 2013. Respiratory syncytial virus induced type I IFN production by pDC is regulated by RSV-infected airway epithelial cells, RSV-exposed monocytes and virus specific antibodies. PLoS ONE. 8:e81695 10.1371/journal.pone.0081695 10.1371/journal.pone.0081695 PMC3841124 24303065 Schoggins J.W., MacDuff D.A., Imanaka N., Gainey M.D., Shrestha B., Eitson J.L., Mar K.B., Richardson R.B., Ratushny A.V., Litvak V., et al. . 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. 505:691–695 10.1038/nature12862 10.1038/nature12862 PMC4077721 24284630 Segura E., Touzot M., Bohineust A., Cappuccio A., Chiocchia G., Hosmalin A., Dalod M., Soumelis V., and Amigorena S.. 2013. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity. 38:336–348 10.1016/j.immuni.2012.10.018 10.1016/j.immuni.2012.10.018 23352235 Seo S.-U., Kwon H.-J., Ko H.-J., Byun Y.-H., Seong B.L., Uematsu S., Akira S., and Kweon M.-N.. 2011. Type I interferon signaling regulates Ly6Chi monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog. 7:e1001304 10.1371/journal.ppat.1001304 10.1371/journal.ppat.1001304 PMC3044702 21383977 Serbina N.V., and Pamer E.G.. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7:311–317 10.1038/ni1309 10.1038/ni1309 16462739 Serbina N.V., Salazar-Mather T.P., Biron C.A., Kuziel W.A., and Pamer E.G.. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 19:59–70 10.1016/S1074-7613(03)00171-7 10.1016/S1074-7613(03)00171-7 12871639 Shi C., and Pamer E.G.. 2011. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11:762–774 10.1038/nri3070 10.1038/nri3070 PMC3947780 21984070 Siezen C.L.E., Bont L., Hodemaekers H.M., Ermers M.J., Doornbos G., Van’t Slot R., Wijmenga C., Houwelingen H.C., Kimpen J.L.L., Kimman T.G., et al. . 2009. Genetic susceptibility to respiratory syncytial virus bronchiolitis in preterm children is associated with airway remodeling genes and innate immune genes. Pediatr. Infect. Dis. J. 28:333–335 10.1097/INF.0b013e31818e2aa9 10.1097/INF.0b013e31818e2aa9 19258923 Slater L., Bartlett N.W., Haas J.J., Zhu J., Message S.D., Walton R.P., Sykes A., Dahdaleh S., Clarke D.L., Belvisi M.G., et al. . 2010. Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog. 6:e1001178 10.1371/journal.ppat.1001178 10.1371/journal.ppat.1001178 PMC2973831 21079690 Smit J.J., Rudd B.D., and Lukacs N.W.. 2006. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med. 203:1153–1159 10.1084/jem.20052359 10.1084/jem.20052359 PMC2121199 16682497 Spann K.M., Tran K.C., Chi B., Rabin R.L., and Collins P.L.. 2004. Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages [corrected]. J. Virol. 78:4363–4369 10.1128/JVI.78.8.4363-4369.2004 10.1128/JVI.78.8.4363-4369.2004 PMC374276 15047850 Stark J.M., Khan A.M., Chiappetta C.L., Xue H., Alcorn J.L., and Colasurdo G.N.. 2005. Immune and functional role of nitric oxide in a mouse model of respiratory syncytial virus infection. J. Infect. Dis. 191:387–395 10.1086/427241 10.1086/427241 15633098 Tal G., Mandelberg A., Dalal I., Cesar K., Somekh E., Tal A., Oron A., Itskovich S., Ballin A., Houri S., et al. . 2004. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J. Infect. Dis. 189:2057–2063 10.1086/420830 10.1086/420830 15143473 Tulic M.K., Hurrelbrink R.J., Prêle C.M., Laing I.A., Upham J.W., Le Souef P., Sly P.D., and Holt P.G.. 2007. TLR4 polymorphisms mediate impaired responses to respiratory syncytial virus and lipopolysaccharide. J. Immunol. 179:132–140 10.4049/jimmunol.179.1.132 10.4049/jimmunol.179.1.132 17579031 Welliver R.C., Garofalo R.P., and Ogra P.L.. 2002. Beta-chemokines, but neither T helper type 1 nor T helper type 2 cytokines, correlate with severity of illness during respiratory syncytial virus infection. Pediatr. Infect. Dis. J. 21:457–461 10.1097/00006454-200205000-00033 10.1097/00006454-200205000-00033 12150192 Yoboua F., Martel A., Duval A., Mukawera E., and Grandvaux N.. 2010. Respiratory syncytial virus-mediated NF-κB p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKKβ. J. Virol. 84:7267–7277 10.1128/JVI.00142-10 10.1128/JVI.00142-10 PMC2898247 20410276 25878250 2015 09 01 2021 02 05 1083-351X 290 21 2015 May 22 The Journal of biological chemistry J Biol Chem Heterogeneous Nuclear Ribonucleoprotein C Proteins Interact with the Human Papillomavirus Type 16 (HPV16) Early 3'-Untranslated Region and Alleviate Suppression of HPV16 Late L1 mRNA Splicing. 13354 13371 13354-71 10.1074/jbc.M115.638098 In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5'-splice site SD3632; produced elevated levels of RNA-binding proteins SRSF1 (ASF/SF2), SRSF9 (SRp30c), and HuR that are known to regulate HPV16 late gene expression; or were shown by a gene expression array analysis to overexpress the RALYL RNA-binding protein of the heterogeneous nuclear ribonucleoprotein C (hnRNP C) family. Overexpression of RALYL or hnRNP C1 induced HPV16 late gene expression from HPV16 subgenomic plasmids and from episomal forms of the full-length HPV16 genome. This induction was dependent on the HPV16 early untranslated region. Binding of hnRNP C1 to the HPV16 early, untranslated region activated HPV16 late 5'-splice site SD3632 and resulted in production of HPV16 L1 mRNAs. Our results suggested that hnRNP C1 controls HPV16 late gene expression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Dhanjal Soniya S From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Kajitani Naoko N From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Glahder Jacob J From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Mossberg Ann-Kristin AK From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Johansson Cecilia C From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden. Schwartz Stefan S From the Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden Stefan.Schwartz@med.lu.se. eng Journal Article Research Support, Non-U.S. Gov't 2015 04 15 United States J Biol Chem 2985121R 0021-9258 0 3' Untranslated Regions 0 C1 HNRNP 0 Capsid Proteins 0 Heterogeneous-Nuclear Ribonucleoprotein Group C 0 Oncogene Proteins, Viral 0 RNA, Messenger 0 RNA, Viral 6LTE2DNX63 L1 protein, Human papillomavirus type 16 IM 3' Untranslated Regions genetics Blotting, Western Capsid Proteins genetics metabolism Epidermal Cells Epidermis metabolism virology Female Fluorescent Antibody Technique Gene Expression Regulation, Viral Heterogeneous-Nuclear Ribonucleoprotein Group C genetics metabolism Human papillomavirus 16 physiology Humans Immunoprecipitation Keratinocytes cytology metabolism virology Microarray Analysis Oncogene Proteins, Viral genetics metabolism RNA Splicing genetics RNA, Messenger genetics RNA, Viral genetics Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction Tumor Cells, Cultured Uterine Cervical Neoplasms metabolism pathology virology DNA viruses HPV RNA processing RNA splicing RNA-binding protein tumor virus 2015 1 12 2015 4 17 6 0 2015 4 17 6 0 2015 9 2 6 0 2016 5 22 ppublish 25878250 PMC4505585 10.1074/jbc.M115.638098 S0021-9258(20)33695-4 Walboomers J. M., Jacobs M. V., Manos M. M., Bosch F. X., Kummer J. A., Shah K. V., Snijders P. J., Peto J., Meijer C. J., Muñoz N. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 10451482 Bouvard V., Baan R., Straif K., Grosse Y., Secretan B., El Ghissassi F., Benbrahim-Tallaa L., Guha N., Freeman C., Galichet L., Cogliano V., and WHO International Agency for Research on Cancer Monograph Working Group (2009) A review of human carcinogens: part B: biological agents. Lancet Oncol. 10, 321–322 19350698 Bosch F. X., Lorincz A., Muñoz N., Meijer C. J., Shah K. V. (2002) The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 55, 244–265 PMC1769629 11919208 zur Hausen H. (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2, 342–350 12044010 Howley P. M., Lowy D. R. (2006) in Virology, 5th Ed (Knipe D. M., Howley P. M., eds) pp 2299–2354, Lippincott, Philadelphia Doorbar J. (2005) The papillomavirus life cycle. J. Clin. Virol. 32, S7–S15 15753007 Chow L. T., Broker T. R., Steinberg B. M. (2010) The natural history of human papillomavirus infections of the mucosal epithelia. APMIS 118, 422–449 20553526 Bodily J., Laimins L. A. (2011) Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol. 19, 33–39 PMC3059725 21050765 Johansson C., Schwartz S. (2013) Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat. Rev. Microbiol. 11, 239–251 23474685 Thierry F. (2009) Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 384, 375–379 19064276 McBride A. A. (2013) The papillomavirus E2 proteins. Virology 445, 57–79 PMC3783563 23849793 Bernard H. U. (2013) Regulatory elements in the viral genome. Virology 445, 197–204 23725692 Graham S. V. (2008) Papillomavirus 3′ UTR regulatory elements. Front. Biosci. 13, 5646–5663 18508613 Jia R., Zheng Z. M. (2009) Regulation of bovine papillomavirus type 1 gene expression by RNA processing. Front. Biosci. 14, 1270–1282 PMC2654602 19273129 Schwartz S. (2013) Papillomavirus transcripts and posttranscriptional regulation. Virology 445, 187–196 23706315 Baker C., Calef C. (1997) in Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences (Billakanti S. R., Calef C. E., Farmer A. D., Halpern A. L., Myers G. L., eds) Los Alamos National Laboratory, Los Almos, NM Jeon S., Lambert P. F. (1995) Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 92, 1654–1658 PMC42578 7878034 Zhao X., Oberg D., Rush M., Fay J., Lambkin H., Schwartz S. (2005) A 57 nucleotide upstream early polyadenylation element in human papillomavirus type 16 interacts with hFip1, CstF-64, hnRNP C1/C2 and PTB. J. Virol. 79, 4270–4288 PMC1061554 15767428 Terhune S. S., Hubert W. G., Thomas J. T., Laimins L. A. (2001) Early polyadenylation signals of human papillomavirus type 31 negatively regulate capsid gene expression. J. Virol. 75, 8147–8157 PMC115059 11483760 Johansson C., Somberg M., Li X., Backström Winquist E., Fay J., Ryan F., Pim D., Banks L., Schwartz S. (2012) HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. EMBO J. 31, 3212–3227 PMC3400011 22617423 Oberg D., Fay J., Lambkin H., Schwartz S. (2005) A downstream polyadenylation element in human papillomavirus type 16 encodes multiple GGG-motifs and interacts with hnRNP H. J. Virol. 79, 9254–9269 PMC1168734 15994820 Rush M., Zhao X., Schwartz S. (2005) A splicing enhancer in the E4 coding region of human papillomavirus type 16 is required for early mRNA splicing and polyadenylation as well as inhibition of premature late gene expression. J. Virol. 79, 12002–12015 PMC1212645 16140776 Somberg M., Li X., Johansson C., Orru B., Chang R., Rush M., Fay J., Ryan F., Schwartz S. (2011) SRp30c activates human papillomavirus type 16 L1 mRNA expression via a bimodal mechanism. J. Gen. Virol. 92, 2411–2421 21697349 Somberg M., Schwartz S. (2010) Multiple ASF/SF2 sites in the HPV-16 E4-coding region promote splicing to the most commonly used 3′-splice site on the HPV-16 genome. J. Virol. 84, 8219–8230 PMC2916536 20519389 Li X., Johansson C., Cardoso Palacios C., Mossberg A., Dhanjal S., Bergvall M., Schwartz S. (2013) Eight nucleotide substitutions inhibit splicing to HPV-16 3′-splice site SA3358 and reduce the efficiency by which HPV-16 increases the life span of primary human keratinocytes. PLoS One 8, e72776. PMC3767658 24039800 Jia R., Li C., McCoy J. P., Deng C. X., Zheng Z. M. (2010) SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance. Int. J. Biol. Sci. 6, 806–826 PMC3005347 21179588 Jia R., Liu X., Tao M., Kruhlak M., Guo M., Meyers C., Baker C. C., Zheng Z. M. (2009) Control of the papillomavirus early-to-late switch by differentially expressed SRp20. J. Virol. 83, 167–180 PMC2612334 18945760 Li X., Johansson C., Glahder J., Mossberg A. K., Schwartz S. (2013) Suppression of HPV-16 late L1 5′-splice site SD3632 by binding of hnRNP D proteins and hnRNP A2/B1 to upstream AUAGUA RNA motifs. Nucleic Acids Res. 22, 10488–10508 PMC3905901 24013563 Zhao X., Rush M., Schwartz S. (2004) Identification of an hnRNP A1 dependent splicing silencer in the HPV-16 L1 coding region that prevents premature expression of the late L1 gene. J. Virol. 78, 10888–10905 PMC521837 15452209 Zhao X., Schwartz S. (2008) Inhibition of HPV-16 L1 expression from L1 cDNAs correlates with the presence of hnRNP A1 binding sites in the L1 coding region. Virus Genes 36, 45–53 18040766 Zhao X., Fay J., Lambkin H., Schwartz S. (2007) Identification of a 17-nucleotide splicing enhancer in HPV-16 L1 that counteracts the effect of multiple hnRNP A1-binding splicing silencers. Virology 369, 351–363 17869320 Collier B., Oberg D., Zhao X., Schwartz S. (2002) Specific inactivation of inhibitory sequences in the 5′ end of the human papillomavirus type 16 L1 open reading frame results in production of high levels of L1 protein in human epithelial cells. J. Virol. 76, 2739–2752 PMC135970 11861841 Nagy A. (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 10686599 Irizarry R. A., Hobbs B., Collin F., Beazer-Barclay Y. D., Antonellis K. J., Scherf U., Speed T. P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 12925520 Tusher V. G., Tibshirani R., Chu G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A. 98, 5116–5121 PMC33173 11309499 Dignam J. D., Lebovitz R. M., Roeder R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 PMC325809 6828386 Somberg M., Zhao X., Fröhlich M., Evander M., Schwartz S. (2008) PTB induces HPV-16 late gene expression by interfering with splicing inhibitory elements at the major late 5′-splice site SD3632. J. Virol. 82, 3665–3678 PMC2268445 18216120 Orrù B., Cunniffe C., Ryan F., Schwartz S. (2012) Development and validation of a novel reporter assay for human papillomavirus type 16 late gene expression. J. Virol. Methods 183, 106–116 22484615 Ozbun M. A., Meyers C. (1997) Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J. Virol. 71, 5161–5172 PMC191751 9188583 Busch A., Hertel K. J. (2012) Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip. Rev. RNA 3, 1–12 PMC3235224 21898828 Sokolowski M., Zhao C., Tan W., Schwartz S. (1997) AU-rich mRNA instability elements on human papillomavirus type 1 late mRNAs and c-fos mRNAs interact with the same cellular factors. Oncogene 15, 2303–2319 9393875 Sokolowski M., Schwartz S. (2001) Heterogeneous nuclear ribonucleoprotein C binds exclusively to the functionally important UUUUU-motifs in the human papillomavirus type-1 AU-rich inhibitory element. Virus Res. 73, 163–175 11172920 McCloskey A., Taniguchi I., Shinmyozu K., Ohno M. (2012) hnRNP C tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science 335, 1643–1646 22461616 Fay J., Kelehan P., Lambkin H., Schwartz S. (2009) Increased expression of cellular RNA-binding proteins in HPV-induced neoplasia and cervical cancer. J. Med. Virol. 81, 897–907 19319956 Kozak M. (1992) Regulation of translation inititaion in eucaryotic systems. Annu. Rev. Cell Biol. 8, 197–225 1335743 Tomita Y., Simizu B. (1993) Translational properties of the human papillomavirus type-6 L1-coding mRNA. Gene 133, 223–225 8224910 Rosenberger S., De-Castro Arce J., Langbein L., Steenbergen R. D. M., Rösl F. (2010) Alternative splicing of human papillomavirus type-16 E6/E6* early mRNA is coupled to EGF signaling via Erk1/2 activation. Proc. Natl. Acad. Sci. U.S.A. 107, 7006–7011 PMC2872467 20351270 Cheunim T., Zhang J., Milligan S. G., McPhillips M. G., Graham S. V. (2008) The alternative splicing factor hnRNP A1 is up-regulated during virus-infected epithelial cell differentiation and binds the human papillomavirus type 16 late regulatory element. Virus Res. 131, 189–198 PMC2635527 17950949 Collier B., Goobar-Larsson L., Sokolowski M., Schwartz S. (1998) Translational inhibition in vitro of human papillomavirus type 16 L2 mRNA mediated through interaction with heterogenous ribonucleoprotein K and poly(rC)-binding proteins 1 and 2. J. Biol. Chem. 273, 22648–22656 9712894 Zarnack K., König J., Tajnik M., Martincorena I., Eustermann S., Stévant I., Reyes A., Anders S., Luscombe N. M., Ule J. (2013) Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 PMC3629564 23374342 Izquierdo J. M. (2010) Heterogeneous ribonucleoprotein C displays a repressor activity mediated by T-cell intracellular antigen-1-related/like protein to modulate Fas exon 6 splicing through a mechanism involving Hu antigen R. Nucleic Acids Res. 38, 8001–8014 PMC3001070 20699271 Irimura S., Kitamura K., Kato N., Saiki K., Takeuchi A., Gunadi, Matsuo M., Nishio H., Lee M. J. (2009) HnRNP C1/C2 may regulate exon 7 splicing in the spinal muscular atrophy gene SMN1. Kobe J. Med. Sci. 54, E227–E236 19628962 Motta-Mena L. B., Heyd F., Lynch K. W. (2010) Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol Cell. 37, 223–234 PMC2818868 20122404 Tenzer S., Moro A., Kuharev J., Francis A. C., Vidalino L., Provenzani A., Macchi P. (2013) Proteome-wide characterization of the RNA-binding protein RALY-interactome using the in vivo-biotinylation-pulldown-quant (iBioPQ) approach. J. Proteome Res. 12, 2869–2884 23614458 Dreyfuss G., Kim V. N., Kataoka N. (2002) Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell. Biol. 3, 195–205 11994740 Lee H.-H., Chien C.-L., Liao H.-K., Chen Y.-J., Chang Z.-F. (2004) Nuclear efflux of heterogeneous nuclear ribonucleoprotein C1/C2 in apoptotic cells: a novel nuclear export dependent on Rho-associated kinase activation. J. Cell Sci. 117, 5579–5589 15494373 Piñol-Roma S., Dreyfuss G. (1993) Cell cycle-regulated phosphorylation of the pre-mRNA binding (heterogeneous nuclear ribonucleoprotein) C proteins. Mol. Cell. Biol. 13, 5762–5770 PMC360316 8395012 Lee E. K., Kim H. H., Kuwano Y., Abdelmohsen K., Srikantan S., Subaran S. S., Gleichmann M., Mughal M. R., Martindale J. L., Yang X., Worley P. F., Mattson M. P., Gorospe M. (2010) hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nat. Struct. Mol. Biol. 17, 732–739 PMC2908492 20473314 Spångberg K., Wiklund L., Schwartz S. (2000) HuR, a protein implicated in oncogene and growth factor mRNA decay, binds to the 3′ ends of hepatitis C virus RNA of both polarities. Virology 274, 378–390 10964780 Brunner J. E., Ertel K. J., Rozovics J. M., Semler B. L. (2010) Delayed kinetics of poliovirus RNA synthesis in a human cell line with reduced levels of hnRNP C proteins. Virology 400, 240–247 PMC2844484 20189623 Shabman R. S., Gulcicek E. E., Stone K. L., Basler C. F. (2011) The Ebola virus VP24 protein prevents hnRNP C1/C2 binding to karyopherin α1 and partially alters its nuclear import. J. Infect. Dis. 204, S904–S9910 PMC3189985 21987768 Casaca A., Fardilha M., da Cruz e Silva E., Cunha C. (2011) The heterogeneous ribonuclear protein C interacts with the hepatitis δ virus small antigen. Virol. J. 8, 358. PMC3160407 21774814 trying2...
Publications by Johansson C | LitMetric
Publications by authors named "Johansson C"
Oral Surg Oral Med Oral Pathol Oral Radiol
May 2016
Objectives : The main aim of this study was to evaluate the performance of 10 individual sensors of the same make, using objective measures of key image quality parameters. A further aim was to compare 8 brands of sensors.Study Design : Ten new sensors of 8 different models from 6 manufacturers (i.
View Article and Find Full Text PDF
J Neurosurg
February 2017
OBJECTIVE Several older studies report a low risk for parenchymal access to the CNS by surgical techniques. In more recent studies, including those with post-puncture CT scans, there are indications that the risk of bleeding might approach 8%. New therapies, such as those that use viral vectors, modified mRNA, or cell transplantation, will probably warrant more parenchymal access to the CNS.
View Article and Find Full Text PDF
Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies.
View Article and Find Full Text PDF
Int J Environ Res Public Health
February 2016
Combustion-related carbonaceous particles seem to be a better indicator of adverse health effects compared to PM2.5 and PM10. Historical studies are based on black smoke (BS), but more recent studies use absorbance (Abs), black carbon (BC) or elemental carbon (EC) as exposure indicators.
View Article and Find Full Text PDF
Environ Sci Pollut Res Int
April 2016
The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners.
View Article and Find Full Text PDF
Womens Health (Lond)
December 2016
Pregnancy Summit, Cineworld, The O2, London, UK, 29 September to 1 October 2015 The 2015 Pregnancy Summit was held over 3 days from 29 September to 1 October at Cineworld, The O2, London, UK. The event brings together a multidisciplinary faculty of international researchers and clinicians to discuss both scientific and clinical aspects of pregnancy-related issues in an informal setting. The goal of the meeting was to provide delegates with an update of recent advances in management of pregnancy-related conditions, to present research data and to discuss the current attitudes and practices in relevant topics.
View Article and Find Full Text PDF
Soluble epoxide hydrolase (sEH) is involved in the regulation of many biological processes by metabolizing the key bioactive lipid mediator, epoxyeicosatrienoic acids. For the development of sEH inhibitors with improved physicochemical properties, we performed both a fragment screening and a high-throughput screening aiming at an integrated hit evaluation and lead generation. Followed by a joint dose-response analysis to confirm the hits, the identified actives were then effectively triaged by a structure-based hit-classification approach to three prioritized series.
View Article and Find Full Text PDF
Study Question : What proteins are carried by extracellular vesicles (EVs) released from normal first trimester placentae?Summary Answer : One thousand five hundred and eighty-five, 1656 and 1476 proteins were characterized in macro-, micro- and nano-vesicles, respectively, from first trimester placentae, with all EV fractions being enriched for proteins involved in vesicle transport and inflammation.What Is Known Already : Placental EVs are being increasingly recognized as important mediators of both healthy and pathological pregnancies. However, current research has focused on detecting changes in specific proteins in particular fractions of vesicles during disease.
View Article and Find Full Text PDF
Acta Derm Venereol
August 2016
Stress and anxiety may worsen atopic dermatitis (AD) through the serotonin system. Serotonergic expression was measured in 28 patients with AD in relation to extent of the disease (SCORing of Atopic Dermatitis; SCORAD), pruritus intensity (visual analogue scale; VAS), anxiety traits (Swedish Universities Scales of Personality; SSP) and depression (Montgomery-Åsberg Depression Rating Scale-Self assessment; MADRS-S). Biopsies were taken from lesional and non-lesional AD skin, and investigated for expression of serotonin, its receptors 5-HT1A and 5-HT2, and serotonin transporter protein (SERT), using immunohistochemistry.
View Article and Find Full Text PDF
The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths.
View Article and Find Full Text PDF
Glob Chang Biol
July 2016
Rising atmospheric CO2 concentrations will significantly reduce ocean pH during the 21st century (ocean acidification, OA). This may hamper calcification in marine organisms such as corals and echinoderms, as shown in many laboratory-based experiments. Sea urchins are considered highly vulnerable to OA.
View Article and Find Full Text PDF
We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay.
View Article and Find Full Text PDF
Pattern recognition receptors (PRRs) and cytokine receptors are key players in the initiation of immune responses to infection. PRRs detecting viral RNA, such as toll like receptor (TLR)-3, -7/8, and RIG-I like receptors (RLRs; RIG-I and MDA-5), as well as cytokine receptors such as interleukin 1 receptor (IL-1R), have been implicated in responses to RNA viruses that infect the airways. The latter includes respiratory syncytial virus (RSV), a human pathogen that can cause severe lower respiratory tract infections, especially in infants.
View Article and Find Full Text PDF
J Environ Manage
January 2016
Ash disposal waters from coal-fired power stations present a challenging water treatment scenario as they contain high concentrations of the oxyanions Se, As and Mo which are difficult to remove through conventional techniques. In an innovative process, macroalgae can be treated with Fe and processed through slow pyrolysis into Fe-biochar which has a high affinity for oxyanions. However, the effect of production conditions on the efficacy of Fe-biochar is poorly understood.
View Article and Find Full Text PDF
Background Context : Current literature suggests that in the long-term, fusion of the lumbar spine in chronic low back pain (CLBP) does not result in an outcome clearly better than structured conservative treatment modes.Purpose : This study aimed to assess the long-term outcome of lumbar fusion in CLBP, and also to assess methodological problems in long-term randomized controlled trials (RCTs).Study Design : A prospective randomized study was carried out.
View Article and Find Full Text PDF
Int J Mol Sci
August 2015
This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles.
View Article and Find Full Text PDF
Int J Mol Sci
August 2015
Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl methacrylate), and poly(caprolactone). Multi-core particles were obtained within the Z-average size range of 130 to 340 nm.
View Article and Find Full Text PDF
Pharmacol Res Perspect
June 2015
Although the anti-inflammatory role of the A2a receptor is well established, controversy remains with regard to the therapeutic value for A2a agonists in treatment of inflammatory lung diseases, also as a result of unwanted A2a-mediated cardiovascular effects. In this paper, we describe the discovery and characterization of a new, potent and selective A2a agonist (compound 2) with prolonged lung retention and limited systemic exposure following local administration. To support the lead optimization chemistry program with compound selection and profiling, multiple in vitro and in vivo assays were used, characterizing compound properties, pharmacodynamics (PD), and drug concentrations.
View Article and Find Full Text PDF
Global Spine J
August 2015
Study Design Randomized controlled trial. Objective Despite a large number of publications of outcomes after spinal fusion surgery, there is still no consensus on the efficacy of the several different fusion methods. The aim of this study was to determine whether transforaminal lumbar interbody fusion (TLIF) results in an improved clinical outcome compared with uninstrumented posterolateral fusion (PLF) in the surgical treatment for chronic low back pain.
View Article and Find Full Text PDF
Background : It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss.
View Article and Find Full Text PDF
J Expo Sci Environ Epidemiol
June 2016
A planned 21 km bypass (18 km within a tunnel) in Stockholm is expected to reduce ambient air exposure to traffic emissions, but same time tunnel users could be exposed to high concentrations of pollutants. For the health impacts calculations in 2030, the change in annual ambient NOX and PM10 exposure of the general population was modelled in 100 × 100 m(2) grids for Greater Stockholm area. The tunnel exposure was estimated based on calculated annual average NOX concentrations, time spent in tunnel and number of tunnel users.
View Article and Find Full Text PDF
Environ Toxicol Chem
September 2015
Triclosan is a widely used antibacterial agent that has become a ubiquitous contaminant in freshwater, estuary, and marine environments. Concerns about potential adverse effects of triclosan have been described in several recent risk assessments. Its effects on freshwater microbial communities have been well studied, but studies addressing effects on marine microbial communities are scarce.
View Article and Find Full Text PDF
We report that many histone modifications are unevenly distributed over the HPV16 genome in cervical cancer cells as well as in HPV16-immortalized keratinocytes. For example, H3K36me3 and H3K9Ac that are common in highly expressed cellular genes and over exons, were more common in the early than in the late region of the HPV16 genome. In contrast, H3K9me3, H4K20me3, H2BK5me1 and H4K16Ac were more frequent in the HPV16 late region.
View Article and Find Full Text PDF
Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear.
View Article and Find Full Text PDF
In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5'-splice site SD3632; produced elevated levels of RNA-binding proteins SRSF1 (ASF/SF2), SRSF9 (SRp30c), and HuR that are known to regulate HPV16 late gene expression; or were shown by a gene expression array analysis to overexpress the RALYL RNA-binding protein of the heterogeneous nuclear ribonucleoprotein C (hnRNP C) family. Overexpression of RALYL or hnRNP C1 induced HPV16 late gene expression from HPV16 subgenomic plasmids and from episomal forms of the full-length HPV16 genome.
View Article and Find Full Text PDF