In classical physics, there is a well-known theorem in which it is established that the energy per degree of freedom is the same. However, in quantum mechanics, due to the non-commutativity of some pairs of observables and the possibility of having non-Markovian dynamics, the energy is not equally distributed. We propose a correspondence between what is known as the classical energy equipartition theorem and its counterpart in the phase-space formulation in quantum mechanics based on the Wigner representation.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2022
In this work, we deal with the zero temperature hysteretic properties of iron (Fe) quadrangular nanoprisms and the size conditions underlying magnetic vortex states formation. Different aspect ratios of a square base prism of thickness with free boundary conditions were considered in order to summarize our results in a proposal of a field-driven magnetic phase diagram where such vortex states are stable along the hysteresis loops. To do that, a Hamiltonian consisting of exchange, magnetostatic, Zeeman and cubic anisotropy energies was considered.
View Article and Find Full Text PDFGrain boundaries in polycrystalline thin films with crystallite sizes at nanoscale presents regions characterized by a high degree of local structural disorder. As a consequence, great values of the associated local anisotropies are expected. On this regard, a systematic investigation of the effect of the grain boundary anisotropy on the magnetic properties in such type of nanostructured systems is addressed.
View Article and Find Full Text PDF