Publications by authors named "Johanning M"

Beyond established anti-programmed cell death protein 1/programmed cell death ligand 1 immunotherapy, T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) and its ligand CD155 are promising novel inhibitory immune checkpoint targets in human malignancies. Yet, in cutaneous squamous cell carcinoma, evidence on the collective expression patterns of these inhibitory immune checkpoints is scarce. Complete tumour sections of 36 cutaneous squamous cell carcinoma, 5 cutaneous metastases and 9 keratoacanthomas, a highly-differentiated, squamoproliferative tumour, with disparately benign biologic behaviour, were evaluated by immunohistochemistry for expression of programmed cell death ligand 1 (Tumor Proportion Score, Immune Cell Score), TIGIT, CD155 and CD8+ immune infiltrates.

View Article and Find Full Text PDF

A promising scheme for building scalable quantum simulators and computers is the synthesis of a scalable system using interconnected subsystems. A prerequisite for this approach is the ability to faithfully transfer quantum information between subsystems. With trapped atomic ions, this can be realized by transporting ions with quantum information encoded into their internal states.

View Article and Find Full Text PDF

Objective: To evaluate changes in tooth color for 2 age cohorts (younger cohort, YC: 1950-1952; older cohort, OC: 1930-1932) over a mean observation period of 8 years.

Material And Methods: Sixty-one participants with 106 upper central incisors were subjected to baseline and follow-up examinations (YC: n = 46/OC: n = 15). International Commission on Illumination color coordinates of 1 or 2 unrestored test teeth for each participant were recorded by use of a spectrophotometer (VITA Easyshade 1) during both measurement times.

View Article and Find Full Text PDF

This article reports on the development of a multichannel arbitrary waveform generator that simultaneously generates arbitrary voltage waveforms on 24 independent channels with a dynamic update rate of up to 25 Msps. A real-time execution of a single waveform and/or sequence of multiple waveforms in succession, with a user programmable arbitrary sequence order is provided under the control of a stand-alone sequencer circuit implemented using a field programmable gate array. The device is operated using an internal clock and can be synced to other devices by means of transistor-transistor logic (TTL) pulses.

View Article and Find Full Text PDF

We report on the experimental investigation of an individual pseudomolecule using trapped ions with adjustable magnetically induced J-type coupling between spin states. Resonances of individual spins are well separated and are addressed with high fidelity. Quantum gates are carried out using microwave radiation in the presence of thermal excitation of the pseudomolecule's vibrations.

View Article and Find Full Text PDF

Trapped atomic ions have been used successfully to demonstrate basic elements of universal quantum information processing. Nevertheless, scaling up such methods to achieve large-scale, universal quantum information processing (or more specialized quantum simulations) remains challenging. The use of easily controllable and stable microwave sources, rather than complex laser systems, could remove obstacles to scalability.

View Article and Find Full Text PDF

Individual electrodynamically trapped and laser cooled ions are addressed in frequency space using radio-frequency radiation in the presence of a static magnetic field gradient. In addition, an interaction between motional and spin states induced by an rf field is demonstrated employing rf optical double resonance spectroscopy. These are two essential experimental steps towards realizing a novel concept for implementing quantum simulations and quantum computing with trapped ions.

View Article and Find Full Text PDF