Type 1 diabetes (T1D) is associated with an increased risk of hip fracture beyond what can be explained by reduced bone mineral density, possibly due to changes in bone material from accumulation of advanced glycation end-products (AGEs) and altered matrix composition, though data from human cortical bone in T1D are limited. The objective of this study was to evaluate cortical bone material behavior in T1D by examining specimens from cadaveric femora from older adults with long-duration T1D (≥50 yr; n = 20) and age- and sex-matched nondiabetic controls (n = 14). Cortical bone was assessed by mechanical testing (4-point bending, cyclic reference point indentation, impact microindentation), AGE quantification [total fluorescent AGEs, pentosidine, carboxymethyl lysine (CML)], and matrix composition via Raman spectroscopy.
View Article and Find Full Text PDFDiabetes, a disease marked by consistent high blood glucose levels, is associated with various complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Notably, skeletal fragility has emerged as a significant complication in both type 1 (T1D) and type 2 (T2D) diabetic patients. This review examines noninvasive imaging studies that evaluate skeletal outcomes in adults with T1D and T2D, emphasizing distinct skeletal phenotypes linked with each condition and pinpointing gaps in understanding bone health in diabetes.
View Article and Find Full Text PDFAstronauts have an increased risk of back pain and disc herniation upon returning to Earth. Thus, it is imperative to understand the effects of spaceflight and readaptation to gravity on the musculoskeletal tissues of the spine. Here we investigated whether ~6 months of spaceflight led to regional differences in bone loss within the vertebral body.
View Article and Find Full Text PDFBackground Patients with Gaucher disease (GD) have a high risk of fragility fractures. Routine evaluation of bone involvement in these patients includes radiography and repeated dual-energy x-ray absorptiometry (DXA). However, osteonecrosis and bone fracture may affect the accuracy of DXA.
View Article and Find Full Text PDFPurpose: The nature and focus of hand surgery fellowships has been shown to vary. Compounding this issue is a paucity of information regarding the educational goals and desires of prospective fellows. The purpose of this study was to understand applicant motivation for pursuing a fellowship and the most important components of these fellowships.
View Article and Find Full Text PDFBackground: Markers of bone metabolism (MBM) play an important role in fracture evaluation, and changes have been associated with increased fracture risk. The purpose of the present study was to describe changes in MBM in premenopausal women with distal radial fractures.
Methods: Premenopausal women with distal radial fractures (n = 34) and without fractures (controls) (n = 39) were recruited.
Higher fracture risk in White versus Black women is partly explained by lower BMD and worse bone microarchitecture in White women. However, whether rates of decline in bone density, microarchitecture and strength differ between postmenopausal Black and White women is unknown. Further, factors that influence rates of age-related bone microarchitecture deterioration remain ill-defined.
View Article and Find Full Text PDFBackground: Bone stress injuries (BSIs) occur in up to 20% of runners and military personnel. Typically, after a period of unloading and gradual return to weightbearing activities, athletes return to unrestricted sports participation or military duty approximately 4 to 14 weeks after a BSI diagnosis, depending on the injury location and severity. However, the time course of the recovery of the bone's mechanical competence is not well-characterized, and reinjury rates are high.
View Article and Find Full Text PDFUnlabelled: In a population-based study, we found that computed tomography (CT)-based bone density and strength measures from the thoracic spine predicted new vertebral fracture as well as measures from the lumbar spine, suggesting that CT scans at either the thorax or abdominal regions are useful to assess vertebral fracture risk.
Introduction: Prior studies have shown that computed tomography (CT)-based lumbar bone density and strength measurements predict incident vertebral fracture. This study investigated whether CT-based bone density and strength measurements from the thoracic spine predict incident vertebral fracture and compared the performance of thoracic and lumbar bone measurements to predict incident vertebral fracture.
Ectotherm development rates often show adaptive divergence along climatic gradients, but the genetic basis for this variation is rarely studied. Here, we investigated the genetic basis for phenotypic variation in larval development in the moor frog Rana arvalis from five regions along a latitudinal gradient from Germany to northern Sweden. We focused on the C/EBP-1 gene, a transcription factor associated with larval development time.
View Article and Find Full Text PDFUnlabelled: Prior studies show vertebral strength from computed tomography-based finite element analysis may be associated with vertebral fracture risk. We found vertebral strength had a strong association with new vertebral fractures, suggesting that vertebral strength measures identify those at risk for vertebral fracture and may be a useful clinical tool.
Introduction: We aimed to determine the association between vertebral strength by quantitative computed tomography (CT)-based finite element analysis (FEA) and incident vertebral fracture (VF).
Purpose Of Review: This review critiques the ability of CT-based methods to predict incident hip and vertebral fractures.
Recent Findings: CT-based techniques with concurrent calibration all show strong associations with incident hip and vertebral fracture, predicting hip and vertebral fractures as well as, and sometimes better than, dual-energy X-ray absorptiometry areal biomass density (DXA aBMD). There is growing evidence for use of routine CT scans for bone health assessment.
Unlabelled: Relative age-related deficit in trunk muscle density was greater in women than men whereas the relative decrease in muscle mass with age was similar in both sexes. The greater muscle fat content and greater age-related fat accumulation among women may contribute to women suffering more functional disabilities than men.
Introduction: A better understanding of the effect of aging on trunk musculature will have implications for physical function, disability, pain, and risk of injury in older adults.
Femoral head diameter is commonly used to estimate body mass from the skeleton. The three most frequently employed methods, designed by Ruff, Grine, and McHenry, were developed using different populations to address different research questions. They were not specifically designed for application to female remains, and their accuracy for this purpose has rarely been assessed or compared in living populations.
View Article and Find Full Text PDFOwing to an oversight by the corresponding author, the name of the third author of this article was rendered wrongly. His correct name is Kempland C. Walley.
View Article and Find Full Text PDFUnlabelled: Individual trabecular segmentation was utilized to identify differences in trabecular bone structure in premenopausal women with wrist fractures and non-fracture controls. Fracture subjects had reduced trabecular plate volume, number, thickness, and connectivity. Identifying altered trabecular microarchitecture in young women offers opportunities for counseling and lifestyle modifications to reduce fracture risk.
View Article and Find Full Text PDFIt is not clear which non-invasive method is most effective for predicting strength of the proximal femur in those at highest risk of fracture. The primary aim of this study was to compare the abilities of dual energy X-ray absorptiometry (DXA)-derived aBMD, quantitative computed tomography (QCT)-derived density and volume measures, and finite element analysis (FEA)-estimated strength to predict femoral failure load. We also evaluated the contribution of cortical and trabecular bone measurements to proximal femur strength.
View Article and Find Full Text PDFBackground: Hip fractures are mainly caused by accidental falls and trips, which magnify forces in well-defined areas of the proximal femur. Unfortunately, the same areas are at risk of rapid bone loss with ageing, since they are relatively stress-shielded during walking and sitting. Focal osteoporosis in those areas may contribute to fracture, and targeted 3D measurements might enhance hip fracture prediction.
View Article and Find Full Text PDFThe first natural chromosomal variation in the house mouse was described nearly 50 years ago in Val Poschiavo on the Swiss side of the Swiss-Italian border in the Central Eastern Alps. Studies have extended into neighboring Valtellina, and the house mice of the Poschiavo-Valtellina area have been subject to detailed analysis, reviewed here. The maximum extent of this area is 70 km, yet it has 4 metacentric races and the standard 40-chromosome telocentric race distributed in a patchwork fashion.
View Article and Find Full Text PDFThe importance of chromosomal rearrangements for speciation can be inferred from studies of genetic exchange between hybridising chromosomal races within species. Reduced fertility or recombination suppression in karyotypic hybrids has the potential to maintain or promote genetic differentiation in genomic regions near rearrangement breakpoints. We studied genetic exchange between two hybridising groups of chromosomal races of house mouse in Upper Valtellina (Lombardy, Italy), using microsatellites.
View Article and Find Full Text PDFUnlabelled: Association between serum bone formation and resorption markers and bone mineral, structural, and strength variables derived from quantitative computed tomography (QCT) in a population-based cohort of 1745 older adults was assessed. The association was weak for lumbar spine and femoral neck areal and volumetric bone mineral density.
Introduction: The aim of this study was to examine the relationship between levels of bone turnover markers (BTMs; osteocalcin (OC), C-terminal cross-linking telopeptide of type I collagen (CTX), and procollagen type 1N propeptide (P1NP)) and quantitative computed tomography (QCT)-derived bone density, geometry, and strength indices in the lumbar spine and femoral neck (FN).
Hip fractures are the most serious of all fragility fractures in older people of both sexes. Trips, stumbles, and falls result in fractures of the femoral neck or trochanter, and the incidence of these two common fractures is increasing worldwide as populations age. Although clinical risk factors and chance are important in causation, the ability of a femur to resist fracture also depends on the size and spatial distribution of the bone, its intrinsic material properties, and the loads applied.
View Article and Find Full Text PDFThe risk of hip fracture rises rapidly with age, and is notably higher in women. After falls and prior fragility fractures, the main clinically recognized risk factor for hip fracture is reduced bone density. To better understand the extent to which femoral neck density and structure change with age in each sex, we carried out a longitudinal study in subjects not treated with agents known to influence bone mineral density (BMD), to investigate changes in regional cortical thickness, as well as cortical and trabecular BMD at the mid-femoral neck.
View Article and Find Full Text PDF