Publications by authors named "Johannes von Burstin"

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most deadly types of cancer, and the majority of pancreatic cancer deaths is caused by metastasis. Therapeutic options for systemic disease are limited, in particular due to the heterogeneous events leading to tumor dissemination. Previous studies highlighted an association of the homeodomain transcription factor MEIS1 with a ductal phenotype in pancreatic tissue architecture.

View Article and Find Full Text PDF

Epithelium of the colon and intestine are renewed every 3 days. In the intestine there are at least two principal stem cell pools. The first contains rapid cycling crypt-based columnar (CBC) Lgr5(+) cells, and the second is composed of slower cycling Bmi1-expressing cells at the +4 position above the crypt base.

View Article and Find Full Text PDF

Unlabelled: Pancreatic cancer is one of the deadliest cancers with poor survival rates and limited therapeutic options. To improve the understanding of this disease's biology, a prerequisite for the generation of novel therapeutics, new platforms for rapid and efficient genetic and therapeutic screening are needed. Therefore, a combined in vitro/in vivo hybrid shRNA assay was developed using isolated murine primary pancreatic ductal cells (PDCs), in which oncogenic Kras(G12D) could be activated in vitro by genomic recombination through 4OH-tamoxifen-induced nuclear translocation of Cre-ERT2 expressed under control of the ROSA26 promoter.

View Article and Find Full Text PDF

Pancreatic exocrine cell plasticity can be observed during development, pancreatitis with subsequent regeneration, and also transformation. For example, acinar-ductal metaplasia (ADM) occurs during acute pancreatitis and might be viewed as a prelude to pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC) development. To elucidate regulatory processes that overlap ductal development, ADM, and the progression of normal cells to PanIN lesions, we undertook a systematic approach to identify the Prrx1 paired homeodomain Prrx1 transcriptional factor as a highly regulated gene in these processes.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with poor patient outcome often resulting from late diagnosis in advanced stages. To date methods to diagnose early-stage PDAC are limited and in vivo detection of pancreatic intraepithelial neoplasia (PanIN), a preinvasive precursor of PDAC, is impossible. Using a cathepsin-activatable near-infrared probe in combination with flexible confocal fluorescence lasermicroscopy (CFL) in a genetically defined mouse model of PDAC we were able to detect and grade murine PanIN lesions in real time in vivo.

View Article and Find Full Text PDF

Background: Pancreas organogenesis is the result of well-orchestrated and balanced activities of transcription factors. The homeobox transcription factor PDX-1 plays a crucial role in the development and function of the pancreas, both in the maintenance of progenitor cells and in determination and maintenance of differentiated endocrine cells. However, the activity of homeobox transcription factors requires coordination with co-factors, such as PBX and MEIS proteins.

View Article and Find Full Text PDF

Embryonic development of the pancreas is marked by an early phase of dramatic morphogenesis, in which pluripotent progenitor cells of the developing pancreatic epithelium give rise to the full array of mature exocrine and endocrine cell types. The genetic determinants of acinar and islet cell lineages are somewhat well defined; however, the molecular mechanisms directing ductal formation and differentiation remain to be elucidated. The complex ductal architecture of the pancreas is established by a reiterative program of progenitor cell expansion and migration known as branching morphogenesis, or tubulogenesis, which proceeds in mouse development concomitantly with peak Pdx1 transcription factor expression.

View Article and Find Full Text PDF

Background & Aims: Early metastasis is a hallmark of pancreatic ductal adenocarcinoma and responsible for >90% of pancreatic cancer death. Because little is known about the biology and genetics of the metastatic process, we desired to elucidate molecular pathways mediating pancreatic cancer metastasis in vivo by an unbiased forward genetic approach.

Methods: Highly metastatic pancreatic cancer cell populations were selected by serial in vivo passaging of parental cells with low metastatic potential and characterized by global gene expression profiling, chromatin immunoprecipitation, and in vivo metastatic assay.

View Article and Find Full Text PDF

Pancreatic cancer is a serious disease with poor patient outcome, often as a consequence of late diagnosis in advanced stages. This is in large part due to the lack of diagnostic tools for early detection. To address this deficiency, we have investigated novel molecular near-infrared fluorescent (NIRF) in vivo imaging techniques in clinically relevant mouse models of pancreatic cancer.

View Article and Find Full Text PDF