Publications by authors named "Johannes van Leeuwen"

Multipotent bone marrow mesenchymal stromal/stem cells (MSCs) respond to mechanical forces. MSCs perceive static and dynamic forces through focal adhesions, as well as cytoskeletal and intranuclear actin. Dynamic strain stimulates nuclear β-catenin (Ctnnb1) that controls gene expression and suppresses osteogenesis.

View Article and Find Full Text PDF

Vasorin (Vasn) is a pleiotropic molecule involved in various physiological and pathological conditions, including cancer. Vasn has also been detected in bone cells of developing skeletal tissues but no function for Vasn in bone metabolism has been implicated yet. Therefore, this study aimed to investigate if Vasn plays a significant role in bone biology.

View Article and Find Full Text PDF

One of the main regulators of phosphate homeostasis is fibroblast growth factor 23 (FGF23), secreted by osteocytes. The effects of organic versus inorganic dietary phosphate on this homeostasis are unclear. This study used MC3T3-E1 FGF23-producing cells to examine the transcriptomic responses to these phosphates.

View Article and Find Full Text PDF
Article Synopsis
  • - Bone development and maintenance are influenced by environmental factors and hormones that activate signaling pathways, affecting gene expression in the nucleus.
  • - Gene expression related to bone is regulated by chromatin structure, which controls the accessibility of DNA sequences necessary for bone formation, especially during early embryonic stages to prevent premature mineralization.
  • - Key epigenetic regulators, including various enzymes, play crucial roles in either promoting or inhibiting bone cell differentiation and function, impacting the behavior of stem cells and their development into bone-forming cells (osteoblasts).
View Article and Find Full Text PDF

Background: The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity.

View Article and Find Full Text PDF

Osteogenic differentiation of mesenchymal cells is controlled by epigenetic enzymes that regulate post-translational modifications of histones. Compared to acetyl or methyltransferases, the physiological functions of protein arginine methyltransferases (PRMTs) in osteoblast differentiation remain minimally understood. Therefore, we surveyed the expression and function of all nine mammalian PRMT members during osteoblast differentiation.

View Article and Find Full Text PDF

Sex differences in serum phosphate and calcium have been reported but the exact nature and underlying regulatory mechanisms remain unclear. We aimed to compare calcium and phosphate concentrations between sexes, and explore potential covariates to elucidate underlying mechanisms of sex differences in a prospective, population-based cohort study. Pooled data of subjects > 45 years from three independent cohorts of the Rotterdam Study (RS) were used: RS-I-3 (n = 3623), RS-II-1 (n = 2394), RS-III-1 (n = 3241), with separate analyses from an additional time point of the first cohort RS-I-1 (n = 2688).

View Article and Find Full Text PDF

Background: Recent evidence suggests that accumulation of marrow adipose tissue induced by aberrant lineage allocation of bone marrow-derived mesenchymal stromal cells (BMSCs) contributes to the pathophysiologic processes of osteoporosis. Although master regulators of lineage commitment have been well documented, molecular switches between osteogenesis and adipogenesis are largely unknown.

Methods: HSPB7 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses.

View Article and Find Full Text PDF

Despite its rigid structure, the bone is a dynamic organ, and is highly regulated by endocrine factors. One of the major bone regulatory hormones is vitamin D. Its renal metabolite 1α,25-OH2D3 has both direct and indirect effects on the maintenance of bone structure in health and disease.

View Article and Find Full Text PDF

Several physiological and pathological conditions such as aging, obesity, diabetes, anorexia nervosa are associated with increased adipogenesis in the bone marrow. A lack of effective drugs hinder the improved treatment for aberrant accumulation of bone marrow adipocytes. Given the higher costs, longer duration and sometimes lack of efficacy in drug discovery, computational and experimental strategies have been used to identify previously approved drugs for the treatment of diseases, also known as drug repurposing.

View Article and Find Full Text PDF

Arboviruses target bone forming osteoblasts and perturb bone remodeling via paracrine factors. We previously reported that Zika virus (ZIKV) infection of early-stage human mesenchymal stromal cells (MSCs) inhibited the osteogenic lineage commitment of MSCs. To understand the physiological interplay between bone development and ZIKV pathogenesis, we employed a primary in vitro model to examine the biological responses of MSCs to ZIKV infection at different stages of osteogenesis.

View Article and Find Full Text PDF

Bone formation is controlled by histone modifying enzymes that regulate post-translational modifications on nucleosomal histone proteins and control accessibility of transcription factors to gene promoters required for osteogenesis. Enhancer of Zeste homolog 2 (EZH2/Ezh2), a histone H3 lysine 27 (H3K27) methyl transferase, is a suppressor of osteoblast differentiation. Ezh2 is regulated by SET and MYND domain-containing protein 2 (SMYD2/Smyd2), a lysine methyltransferase that modifies both histone and non-histone proteins.

View Article and Find Full Text PDF

A functional vascular system is a prerequisite for bone repair as disturbed angiogenesis often causes non-union. Paracrine factors released from human bone marrow derived mesenchymal stromal cells (BMSCs) have angiogenic effects on endothelial cells. However, whether these paracrine factors participate in blood flow dynamics within bone capillaries remains poorly understood.

View Article and Find Full Text PDF

Bone-related complications are commonly reported following arbovirus infection. These arboviruses are known to disturb bone-remodeling and induce inflammatory bone loss via increased activity of bone resorbing osteoclasts (OCs). We previously showed that Zika virus (ZIKV) could disturb the function of bone forming osteoblasts, but the susceptibility of OCs to ZIKV infection is not known.

View Article and Find Full Text PDF

The bone microenvironment is one of the most hypoxic regions of the human body and in experimental models; hypoxia inhibits osteogenic differentiation of mesenchymal stromal cells (MSCs). Our previous work revealed that Mucin 1 (MUC1) was dynamically expressed during osteogenic differentiation of human MSCs and upregulated by hypoxia. Upon stimulation, its C-terminus (MUC1-CT) is proteolytically cleaved, translocases to the nucleus, and binds to promoters of target genes.

View Article and Find Full Text PDF

This article reviews the development of research in the field of craniosynostosis from a bibliometric standpoint. Craniosynostosis is a malformation occurring during the early development of the skull, when one or more of the sutures close too early, causing problems with normal brain and skull growth. Research in this field has developed from early clinical case descriptions, to genetic discoveries responsible for the occurring malformations and onwards to developing sophisticated surgical treatment.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem/stromal cells (BMSCs) are fundamental to bone regenerative therapies, tissue engineering, and postmenopausal osteoporosis. Donor variation among patients, cell heterogeneity, and unpredictable capacity for differentiation reduce effectiveness of BMSCs for regenerative cell therapies. The cell surface glycoprotein CD24 exhibits the most prominent differential expression during osteogenic versus adipogenic differentiation of human BMSCs.

View Article and Find Full Text PDF

Osteolineage cell-derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non-stimulatory osteolineage EVs by next-generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV-derived candidate regulators of ex vivo HSPC expansion.

View Article and Find Full Text PDF

Bone marrow derived mesenchymal stromal cells (BMSCs) are multipotent progenitors of particular interest for cell-based tissue engineering therapies. However, one disadvantage that limit their clinical use is their heterogeneity. In the last decades a great effort was made to select BMSC subpopulations based on cell surface markers, however there is still no general consensus on which markers to use to obtain the best BMSCs for tissue regeneration.

View Article and Find Full Text PDF

Activins regulate bone formation by controlling osteoclasts and osteoblasts. We investigated Activin-A mechanism of action on human osteoblast mineralization, RNA and microRNA (miRNA) expression profile. A single 2-day treatment of Activin-A at Day 5 of osteoblast differentiation significantly reduced matrix mineralization.

View Article and Find Full Text PDF

The use of biomaterials and signaling molecules to induce bone formation is a promising approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. We investigated the effect of FST in critical processes for bone repair, such as cell recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue engineering.

View Article and Find Full Text PDF

Inhibitors of the activin receptor signaling pathway (IASPs) have become candidate therapeutics for sarcopenia and bone remodeling disorders because of their ability to increase muscle and bone mass. However, IASPs utilizing activin type IIA and IIB receptors are also potent stimulators of erythropoiesis, a feature that may restrict their usage to anemic patients because of increased risk of venous thromboembolism. Based on the endogenous TGF-β superfamily antagonist follistatin (FST), a molecule in the IASP class, FST-mFc, was generated and tested in both ovariectomized and naive BALB/c and C57BL/6 mice.

View Article and Find Full Text PDF

Mucin1 (MUC1) encodes a glycoprotein that has been demonstrated to have important roles in cell-cell interactions, cell-matrix interactions, cell signaling, modulating tumor progression and metastasis, and providing physical protection to cells against pathogens. In this study, we investigated the bone phenotype in female C57BL/6 null mice and the impact of the loss of on osteoblasts and osteoclasts. We found that deletion of results in reduced trabecular bone volume in 8-week-old mice compared with wild-type controls, but the trabecular bone volume fraction normalizes with increasing age.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection is typically characterized by a mild self-limiting disease presenting with fever, rash, myalgia and arthralgia and severe fetal complications during pregnancy such as microcephaly, subcortical calcifications and arthrogyropsis. Virus-induced arthralgia due to perturbed osteoblast function has been described for other arboviruses. In case of ZIKV infection, the role of osteoblasts in ZIKV pathogenesis and bone related pathology remains unknown.

View Article and Find Full Text PDF

Cortical bone is remodeled by intracortical basic multicellular units (BMUs), whose end result can be observed as quiescent osteons in histological sections. These osteons offer a unique opportunity to investigate the BMU balance between the magnitude of bone resorption and subsequent bone formation at the BMU level. Our main objective was to investigate whether the latter parameters change between defined categories of osteons and with age, and to which extend these changes contribute to age-induced cortical porosity.

View Article and Find Full Text PDF